期刊文献+

热力塔系统用于湿冷火电厂余热利用及水回收研究 被引量:15

Application of Chimney Power System in Water-cooling Power Plants for Waste Heat Utilization and Water Recovery
原文传递
导出
摘要 提出了湿冷火电厂冷却塔建立热力塔发电系统以利用废热和回收水的建议,对此进行了全面的热力学分析与计算。计算表明,热力塔不仅能够利用湿冷电厂的余热进行发电,而且通过在热力塔内安装汽水分离装置和在塔顶安装水回收装置能够起到水回收的作用。在一定的高度和环境温度范围内,热力塔的效率随着塔高的增加而增加,但随着涡轮入口温度的增高有一最大值。当塔高2000m、环境温度为15℃、涡轮进口温度为25℃时,热力塔系统能够增加2×600和2×1000MW机组电厂的发电容量分别达到25.11和37.28MW,同时能够回收电厂蒸发水量的37.21%,合年回收凝结水分别为648万t和962万t。 It was suggested to erection the chimney power in the water cooling tower of the thermal power plant to recover the waste heat and water. And this chimney power system was analyzed thermodynamically. The predictions show that chimney power not only could generate eclectic power with the waste heat, but also could retrieve water through steam-water separator and recovery equipment at the top of the tower. It is found that within a limited range of height and turbine inlet temperature at the bottom, the tower thermal efficiency increases with the increasing of tower height, reaching a peak. For the 2×600 MW and 2×1 000 MW power plant units, the chimney power could provide 25.11MWe and 37.28 MW electric power respectively, for the tower height of 2 000 m, environmental temperature of 15℃ and turbine inlet temperature of 25 ℃ . In the same time, 37.21% water evaporated at the bottom of the tower is recovered, about 6.48×106 t per year and 9.62×106 t per year respectively.
出处 《中国电机工程学报》 EI CSCD 北大核心 2010年第23期24-33,共10页 Proceedings of the CSEE
关键词 热力塔 湿冷机组火电厂 余热利用 热效率 水回收 chimney power water-cooling power plant waste heat utilization thermal efficiency water recovery
  • 相关文献

参考文献17

  • 1李建锋,吕俊复,郝继红,杨迪,冀慧敏.海水西调用于火力发电的研究[J].现代化工,2009,29(11):85-88. 被引量:1
  • 2Joachim B. Status report on solar trough power plants - experience, prospects and recommendations to overcome market barriers of parabolic trough collector power plant technology[M]. Germany: Pilkington Solar International Gmbh, 1996: 5-10.
  • 3Kolb G, Alpertdaniel J, Lopez C, et al. Insights from the operation of solar one and their implications for future central receiver plants [J]. Solar Energy, 1991, 47(1): 39-47.
  • 4WangZ, YaoZ, DongJ, etal. The design of a 1 MW solar thermal tower plant in Beijing[C]. Proceedings of ISES Solar World Congress 2007. Beijing, 2007.- 1729-1732.
  • 5Buck R, Lupfert E, Tellez F. Receiver for solar - hybrid gas turbine and CC Systems REFOS[C]. The 10th Solar Paces Int. Symposium on Solar Thermal, Sydney, 2000.. 95-100.
  • 6Helnmut K, Rainer K, Joachimn, et al. Solar thermal power plants for solar countries-technology, Economics and market potential [J]. Applied Energy, 1995(52): 165-183.
  • 7Eduardo Z, Loreto V, Javier L, et al. The DISS Project: direct steam generation in parabolic trough systems, operation and maintenance experience[J]. Journal of Solar Energy Engineering, 2002(124).- 126-133.
  • 8黄素逸.太阳能热气流电站系统的研究进展[J].东莞理工学院学报,2006,13(4):10-14. 被引量:8
  • 9刘伟,明廷臻,杨昆,潘垣.MW级太阳能热气流电站传热和流动特性研究[J].华中科技大学学报(自然科学版),2005,33(8):5-7. 被引量:12
  • 10明廷臻,刘伟,许国良,杨昆.太阳能热气流电站系统的热力学分析[J].华中科技大学学报(自然科学版),2005,33(8):1-4. 被引量:11

二级参考文献110

共引文献71

同被引文献160

引证文献15

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部