期刊文献+

基于指定元分析的多级相对微小故障诊断方法 被引量:8

DCA Based Multi-level Small Fault Diagnosis Method
在线阅读 下载PDF
导出
摘要 设备运作过程中可能出现的微小故障,往往会因其呈现的异常征兆较小而被淹没在显著故障或噪声中,从而现有的方法难以很好地对其进行监控.本文在DCA空间投影框架下建立了观测空间的多级分解思想,并在此基础上提出一种多级相对微小故障诊断算法.将观测数据关于显著指定模式进行DCA分析,并移除显著变化模式的影响,以提高微小故障信号的信噪比.根据其向故障子空间投影能量的显著性判断残差数据中是否还包含仍未被诊断出、且具有一定影响的微小故障;根据各故障方向上投影能量的显著性进行微小故障诊断;重复以上过程,直到各级微小故障均被诊断出来.包含四种共存故障的观测数据的仿真研究,验证了该算法的有效性. Small faults with insignificant abnormal symptoms were usually submerged in large faults or noise.Most fault diagnosis methods were invalid in the case when small faults occurred.We present a multi-level space decomposition mechanism and a small fault diagnosis algorithm.Implement designated component analysis(DCA) to the observation data for significant variation patterns;Remove the effect of significant designated patterns to get the residual which will increase the signal-to-noise rate of small fault signal;Determining whether small faults have occurred in the system using the projection significance index in the residual space;Repeat this process until all possible small faults are diagnosed.Simulation for observation data involved 4 faults shows its efficiency of this algorithm.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第8期1874-1879,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60804026) 河南省国际合作项目(No.094300510043) 水利部堤防安全与病害防治工程技术研究中心开放课题(No.2010003)
关键词 微小故障诊断 空间分解 故障模式 指定元分析 small fault diagnosis space decomposition fault pattern designated component analysis(DCA)
  • 相关文献

参考文献15

二级参考文献196

共引文献383

同被引文献45

  • 1薛建中,闫相国,郑崇勋.用核学习算法的意识任务特征提取与分类[J].电子学报,2004,32(10):1749-1753. 被引量:10
  • 2郝小礼,陈友明,张国强.小波滤波在小故障检测中的应用[J].暖通空调,2005,35(8):138-140. 被引量:6
  • 3Kano M, Nakagawa Y. Data-based process monitoring, pro- cess control, and quality improvement: Recent develop- ments and applications in steel industry. Computers and Chemical Engineering, 2008, 32(1-2): 12-24.
  • 4Venkatasubramanian V, Rengaswamy R, Kavuri S N. A re- view of process fault detection and diagnosis: part II: qual- itative models and search strategies. Computers and Chem- ical Engineering, 2003, 27(3): 313-326.
  • 5Alcala C F, Qin S J. Analysis and generalization of fault di- agnosis methods for process monitoring. Journal of Process Control, 2011, 21(3): 322-330.
  • 6Yang H Y. Advanced Prognosis and Health Management of Aircraft and Spacecraft Subsystems [Master dissertation], Massachusetts Institute of Technology, Massachusetts, 2000.
  • 7葛志强,杨春节,宋执环.基于MEWMA-PCA的微小故障检测方法研究及其应用[J].信息与控制,2007,36(5):650-656. 被引量:14
  • 8H HoteUing. Analysis of a complex of statistical variables into principal components[ J]. The Journal of Educational Psycholo- gy, 1933,24(6) :498 - 520.
  • 9Scholkopf B, Smola A J, Muller K. Nonlinear component anal- ysis as a kernel eigenvalue problem[J ]. Neural computation, 1998,10(5) : 1299 - 1319.
  • 10Yoshikazu W.Adaptive subset kernel principal component anal- ysis for time-varying patterns[ J ]. IEEE Transactions on Neural Networks and Learning Systems,2012,23( 12):1961- 1973.

引证文献8

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部