期刊文献+

热红外与多光谱遥感图像的神经网络回归融合方法研究 被引量:5

Fusion of Thermal Infrared and Multispectral Remote Sensing Images via Neural Network Regression
原文传递
导出
摘要 为验证神经网络方法用于遥感图像融合的有效性,归纳了利用神经网络对遥感数据进行回归来实现融合的3种途径,并提出了一种结合图像数据回归和多光谱遥感图像锐化技术来实现热红外图像的全色锐化新方法。这种热红外图像的全色锐化方法,利用了极限学习机(ELM)这种新型神经网络算法,快速高效地由训练样本得到遥感图像数据间的回归关系;同时,方法注重图像数据本身的物理含义,以提高热红外图像数据的真实质量为目标,是一种定量化的图像融合方法。经这种方法融合得到的热红外数据也能很好地用于定量遥感的物理模型,为遥感的实际应用提供方便。该方法的有效性通过对ETM+图像进行实验得到了证明,而直接对热红外图像数据和全色图像数据进行回归的融合模式,在实验中则无法得到满意的结果。 The paper summarizes three modes for the use of neural network regression to fuse remote sensing images, while proposing a new pansharpening method, based on neural network regression, to fuse thermal infrared(TIR) image and the panchromatic(Pan) image, which can hardly be done using traditional image fusion techniques. Extreme learning machine algorithm is applied to obtain the regression relationship between remote sensing data, in a rapid and efficient manner, while the pansharpening for TIR focus on the internal physical relations of pixel values recorded as an image, and aiming at a real improvement of the TIR data quality rather than a visual enhancement. TIR data synthesized by this new image fusion method is qualified to be used in physical models. This provides convenience for quantitative remote sensing applications. Experiments on ETM + images prove the effectiveness of this approach which achieves fairly accurate results, while direct fusing mode achieves dissatisfactory results.
作者 姚为 韩敏
出处 《中国图象图形学报》 CSCD 北大核心 2010年第8期1278-1284,共7页 Journal of Image and Graphics
基金 国家科技支撑计划项目(2006BAB14B05) 国家重点基础研究发展计划(973)项目(2006CB403405) 国家自然科学基金项目(60674073)
关键词 遥感 图像融合 全色锐化 回归 极限学习机 remote sensing, image fusion, Pansharpening, regression, ELM
  • 相关文献

参考文献10

  • 1Pohl C, Genderen V J L. Multisensor image fusion in remote sensing: concepts, methods and applications [ J]. International Journal of Remote Sensing, 1998, 19(5) : 823-854.
  • 2Gamba P, Chanussot J. Foreword to the special issue on data fusion [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5) : 1283-1288.
  • 3Alparone L, Wald L, Chanussot J, et al. Comparison of pansharpening algorithms: outcome of the 2006 GRS-S data- fusion contest[ J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 (10) : 3012-3021.
  • 4Ranchin T, Wald L. Fusion of high spatial and spectral resolution images: the ARS1S concept and its implementation [J]. Photogrammetric Engineering & Remote Sensing, 2000, 66(1) : 49-61.
  • 5Wald L. Some terms of reference in data fusion [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37 (3) : 1190-1193.
  • 6Aiazzi B, Baronti S, Selva M. Improving component substitution pansharpening through multivariate regression of MS + Pan data [ J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10) : 3230-3239.
  • 7Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications [ J ]. Neurocomputing, 2006, 70 (1/3) : 489-501.
  • 8杨贵军,柳钦火,刘强,顾行发.基于遗传自组织神经元网络的可见光与热红外遥感数据融合方法[J].武汉大学学报(信息科学版),2007,32(9):786-790. 被引量:2
  • 9Liu J G. Smoothing filter-based intensity modulation: a spectral preserve image fusion technique for improving spatial details[ J ]. International Journal of Remote Sensing, 2000, 21 (18) : 3461- 3472.
  • 10Tu T M, Lee Y C, Huang P S, et al. Modified smoothing-filter- based technique for IKONOS-QuickBird image fusion [J].Optical Engineering, 2006, 45 (6): 66201-66210.

二级参考文献8

  • 1韩玲,吴汉宁,杜子涛.多源遥感影像数据融合方法在地学中的应用[J].地球科学与环境学报,2005,27(3):78-81. 被引量:21
  • 2刘培君,张琳,艾里西尔.库尔班,常萍,李良序,镨拉提,赵兵科.卫星遥感估测土壤水分的一种方法[J].遥感学报,1997,1(2):135-138. 被引量:86
  • 3Kustas W P,Norman J M,Anderson M C,et al.Estimating Subpixel Surface Temperatures and Energy Fluxes from the Vegetation Index-radiometric Temperature Relationship[J].Remote Sensing of Environment,2003,85(4):429-440
  • 4Fischer A.A Model for the Seasonal Variations of Vegetation Indices in Coarse Resolution Data and Its Inversion to Extract Crop Parameters[J].Remote Sensing of Environment,1994b,48(4):220-230
  • 5Carlson T N,Gillies R R,Perry E M.A Method to Make Use of Thermal Infrared Temperature and NDVI Measurements to Infer Soil Water Content and Fractional Vegetation Cover[J].Remote Sensing Reviews,1994,52:45-59
  • 6Thomas J J,Daoyi C,Michael C,et al.Vegetation Water Content Mapping Using Landsat Data Derived Normalized Difference Water Index for Corn and Soybeans[J].Remote Sensing of Environment,2004,92:475-482
  • 7Noilhan J,Mahfouf J F.The ISBA Land Surface Parameterization Scheme[J].Global Planet Change,1996,13:145-159
  • 8齐述华,王长耀,牛铮.利用温度植被旱情指数(TVDI)进行全国旱情监测研究[J].遥感学报,2003,7(5):420-427. 被引量:243

共引文献1

同被引文献224

引证文献5

二级引证文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部