期刊文献+

WGC2环 被引量:5

WGC2 rings
在线阅读 下载PDF
导出
摘要 证明了如下结果:①R是左WGC2环当且仅当每个左正则元是右可逆元;②R是左WGC2环当且仅当对每个左R-模M,每个a∈W(R),总有M=aM;③设R是左WGC2环,则Zl(R)■J(R);④R是co-Hopfian环当且仅当R是左WGC2环和直接有限环;⑤设R是左WGC2环和quasi-normal环,则R是co-Hopfian环;⑥R是除环当且仅当R是无零因子环和左WGC2环. It is shown that ① A ring R is a left WGC2 ring if and only if every left regular element of R is right invertible;② R is a left WGC2 ring if and only if for every left R-module M,and any a∈W(R),thus M=aM;③ Let R be a left WGC2 ring.Then Zl(R)lohtain in J(R);④ R is a co-Hopfian ring if and only if R is a left WGC2 ring and directly finite ring;⑤ Let R be a left WGC2 ring and quasi-normal ring.Then R is a co-Hopfian ring;⑥ R is a division ring if and only if R is non-zero-divisor ring and left WGC2 ring.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期6-9,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10771182) 江苏省普通高校研究生科研创新项目(CX09B-309Z)
关键词 左WGC2环 直接有限环 quasi-normal环 co-Hopfian环 left WGC2 ring directly finite ring quasi-normal ring co-Hopfian ring
  • 相关文献

参考文献3

二级参考文献17

  • 1Jun Chao WEI.The Rings Characterized by Minimal Left Ideals[J].Acta Mathematica Sinica,English Series,2005,21(3):473-482. 被引量:7
  • 2魏俊潮.Quasi-duo环的刻画[J].扬州大学学报(自然科学版),2006,9(3):1-4. 被引量:8
  • 3NICHOLSON W K, YOUSIF M F. Weakly continuous and C2-rings[J]. Comm Alg, 2001, 29(6):2429-2446.
  • 4WEI J C. The rings characterized by minimal left ideals[J]. Acta Math Sinica, 2003, 46(4):203-214.
  • 5Nicholson, W. K., "Watters, J. F.: Rings with projective socle. Proc. Amer. Math. Soc., 102, 443-450(1988).
  • 6Nicholson, W. K., Yousif, M. F.: Minijective rings. J. Algebra., 187, 548-578 (1997).
  • 7Camillo, V.: Commutative rings whose principal ideals are annihilators. Portugal Math., 46, 33-37 (1989).
  • 8Xue, W. M.: Characterization of rings using direct projective modules and direct injective modules. J. Pure App. Alg, 87, 99-104 (1993).
  • 9Parmenter, M. M., Stewart, P. N.: Excellent extensions. Comm Alg., 16(4), 703-713 (1988).
  • 10Quinn, D.: Group graded rings and duality. Trans Amer Math Soc., 292, 154-167 (1985).

共引文献14

同被引文献31

  • 1Jun Chao WEI.The Rings Characterized by Minimal Left Ideals[J].Acta Mathematica Sinica,English Series,2005,21(3):473-482. 被引量:7
  • 2NICHOLSON W K. Lifting idempotents and exchange rings [J]. Trans Amer Math Soc, 1977, 229(3): 269-278.
  • 3YU Hua-ping. On quasi-duo rings [J]. GlasgowMath J, 1995, 37(1): 21-31.
  • 4YU Hua-ping. Stable range one for exchange rings [J]. J Pure Appl Algebra, 1995, 98(1) : 105-109.
  • 5WEI Jun-chao, LI Li-bin. Quasi normal rings [J]. Cornm Algebra, 2010, 38(5): 1855-1868.
  • 6WEI Jun-chao, LI Li-bin. Nilpotent elements and reduced rings [J]. Turk J Math, 2010, 34(1): 1-13.
  • 7WEI Jun-chao, LI Li-bin. Weakly normal rings [J]. Turk J Math , 2011, 35(4): 1-11.
  • 8WEI Jun-chao, CHEN Jian-hua. Nil-injective rings[J]. Intern Elect J Algebra, 2007, 2(1):1-21.
  • 9VARADARAJAN K. Hopfian and co-Hopfian objects [J]. Publ Math, 1992, 36(1): 293-317.
  • 10ZHOU Yi-qiang. Rings in which certain right ideals are direct summands of annihilators [J]. J Aust Math Soc, 2002, 73(3).. 335-346.

引证文献5

  • 1李德才,王龙,魏俊潮.Weakly-normal环[J].扬州大学学报(自然科学版),2011,14(2):4-6.
  • 2刘艳红,李男杰,魏俊潮.NIFP环[J].扬州大学学报(自然科学版),2012,15(1):13-15.
  • 3胡雅蓉,李男杰,魏俊潮.EIFP环[J].扬州大学学报(自然科学版),2012,15(2):6-8. 被引量:1
  • 4李男杰,汪兰英,魏俊潮.QMUP-内射环[J].扬州大学学报(自然科学版),2012,15(4):1-4.
  • 5徐诺,顾秋丹,魏俊潮.直接有限环的一些刻画[J].教育教学论坛,2019(36):207-209.

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部