摘要
证明了如下结果:①R是左WGC2环当且仅当每个左正则元是右可逆元;②R是左WGC2环当且仅当对每个左R-模M,每个a∈W(R),总有M=aM;③设R是左WGC2环,则Zl(R)■J(R);④R是co-Hopfian环当且仅当R是左WGC2环和直接有限环;⑤设R是左WGC2环和quasi-normal环,则R是co-Hopfian环;⑥R是除环当且仅当R是无零因子环和左WGC2环.
It is shown that ① A ring R is a left WGC2 ring if and only if every left regular element of R is right invertible;② R is a left WGC2 ring if and only if for every left R-module M,and any a∈W(R),thus M=aM;③ Let R be a left WGC2 ring.Then Zl(R)lohtain in J(R);④ R is a co-Hopfian ring if and only if R is a left WGC2 ring and directly finite ring;⑤ Let R be a left WGC2 ring and quasi-normal ring.Then R is a co-Hopfian ring;⑥ R is a division ring if and only if R is non-zero-divisor ring and left WGC2 ring.
出处
《扬州大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第2期6-9,共4页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(10771182)
江苏省普通高校研究生科研创新项目(CX09B-309Z)