期刊文献+

认知无线电中基于MIMO-OFDM的限速率反馈资源分配算法 被引量:2

Limited-rate feedback resource allocation algorithm based on MIMO-OFDM for cognitive radio systems
在线阅读 下载PDF
导出
摘要 针对基于MIMO-OFDM技术的认知无线电系统,在考虑TCM编码的情况下提出了一种限速率反馈资源分配算法。该算法首先定义系统中各用户的有效发射模式集合;其次,根据链路质量指示函数,以最大化感知协作组吞吐量为目标进行初始的资源分配;然后,以确保认识用户公平享用频谱资源为目标,在认知用户间重新分配子载波和功率;最后,运用统计近似工具更新拉格朗日乘子并通过在线递归方法得到渐进收敛的资源分配解。仿真结果表明,该算法在保证授权用户权益的情况下不仅能有效提高感知协作组吞吐量,而且能保证认识用户公平享用频谱资源,并且具有反馈开销低的特点。 Limited-rate feedback resource allocation algorithm was proposed for cognitive radio systems based on multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) technology considering the trellis coded modulation.Firstly,the algorithm defined the effective set of transmission mode per user.Secondly,it allocated the resource allocation with the goal of maximizing the collaborative awareness group throughput according to the function of link quality indicator.Thirdly,it reallocated the subcarriers and power among the cognitive users with the goal of guaranteeing the cognitive users to access the spectrum fairly.Finally,it updated the Lagrange multipliers utilizing stochastic approximation tools and obtained the asymptotic convergence solution of resource allocation by means of on-line recursion.Simulations corroborate that the algorithm not only improves the throughput of collaborative awareness group effectively but also ensures the cognitive users to access the spectrum fairly,while requiring low feedback overhead.
出处 《通信学报》 EI CSCD 北大核心 2010年第7期96-103,共8页 Journal on Communications
基金 江苏省产学研基金资助项目(BY2009101) 航空基金资助项目(2009ZC52036) 国家自然科学基金资助项目(60801052) 国家教育部博士点基金资助项目(20093218120021)~~
关键词 认知无线电 资源分配 限速率反馈 多输入多输出/正交频分复用 公平 cognitive radio resource allocation limited-rate feedback MIMO-OFDM fairness
  • 相关文献

参考文献2

二级参考文献12

  • 1田峰,程世伦,杨震.无线区域网和认知无线电技术(1)[J].中兴通讯技术,2006,12(4):61-64. 被引量:10
  • 2ZHENG H, CUI P. Collaboration and fairness in opportunistic spectrum access[A]. Proc 40th annual IEEE International Conference on Communications[C]. Seoul,Korea, 2005.16-20.
  • 3CAO L, ZHENG H. Distributed spectrum allocation via local bargaining[A]. IEEE SECON 2005[C].Santa Clara, CA, 2005.475- 486.
  • 4ZHENG H, CAO L. Device-centric spectrum management[A]. DySPAN 2005 [C].Baltimore, MA, USA, 2005.56-65.
  • 5KELLER T, HANZO L. Adaptive modulation techniques for duplex OFDM transmission[J].IEEE Trans Veh Technol, 2000, 49(5):1893- 1906.
  • 6CHRISTINA M.博弈论与经济学[M].张琦译.北京:经济管理出版社,2005.165-172.
  • 7HAN Z, Jl Z, LIU K R. Low-complexity OFDMA channel allocation with Nash bargaining solution fairness[A]. IEEE GLOBECOM '04[C]. Dallas, 2004. 3726- 3731.
  • 8SONG G. Adaptive subcarrier and power allocation in OFDM based on maximizing utility[A]. VTC'03 [C]. Korea, 2003.905-909.
  • 9YU W, CIOFFI J M. FDMA capacity of Gaussian multiaccess channels with ISI[J]. IEEE Trans Commun, 2002, 50(1): 102-111.
  • 10MCHENRY M. Report on spectrum occupancy measurements[EB/OL]. http://www.sharedspectrum.com/?section=nsf_summary, 2005.

共引文献8

同被引文献19

  • 1BYUU S S, BALASINGHAM I, LEE H N. An inventory model- based spectrum pooling for wireless service provider and unli- censed users [J]. Computer communications, 2013, 36 (10) : 1186-1192.
  • 2LIANG Y C, CHEN K C, LI G Y, et al. Cognitive radio net- working and communications: an overview [J]. IEEE transac- tions on vehicular technology, 2011, 60(7): 3386-3407.
  • 3GHOSH A, RATASUK R, MONDAL B, et al. LTE-advanced: next-generation wireless broadband technology [J]. IEEE wire- less communications, 2010, 17(3): 10-22.
  • 4SOHAIL A, AI-IMARI M, XIAO P, et al. Optimal power al- location for MIMO-OFDM based cognitive radio systems with arbitrary input distributions [C]// Proceedings of 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications. London : IEEE, 2013 : 1909-1913.
  • 5CHEN C H, WANG C L. Joint subcarrier and power alloca- tion in muhiuser OFDM-based cognitive radio systems [C]// Proceedings of 2010 IEEE International Conference on Com- munications. Cape Town: IEEE, 2010: 1-5.
  • 6YU W, KWON T, SHIN C. Joint scheduling and dynamic power spectrum optimization for wireless muhicell networks [C]// Proceeding of 2010 44th Annual Conference on Informa- tion Sciences and Systems. Princeton: IEEE, 2010: 1-6.
  • 7ADIAN M G, AGHAEINIA H. Optimal and sub-optimal re- source allocation in multiple-input muhiple-output-orthogonal frequency division multiplexing-based multi-relay cooperative cognitive radio networks [J]. IET communications, 2014, 8(5) : 646-657.
  • 8WANG S, HUANG F, YUAN M, et al. Resource allocation for muhiuser cognitive OFDM networks with proportional rate constraints [J]. International journal of communication sys- tems, 2012, 25(2): 254-269.
  • 9SHAHRAKI H S, MOHAMED-POUR K. Power allocation in multiple-input multiple-output orthogonal frequeney division multiplexing-based cognitive radio networks [J]. IET communi- cations, 2011, 5(3): 362-370.
  • 10赵勇.认知无线电的发展与应用[J].电讯技术,2009,49(6):93-101. 被引量:20

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部