期刊文献+

基于贝叶斯预测的自主车辆避障方法研究

Bayesian Forecasting-Based Collision Avoidance for Autonomous Vehicles
在线阅读 下载PDF
导出
摘要 针对在动态环境中自主车辆对于动态障碍物信息很难具有先验知识的问题,研究了动态贝叶斯网络模型对机动目标运动状态进行贝叶斯预测的推理机理,提出了一种基于贝叶斯预测进行自主车辆避障路径规划控制方法;该规划方法在VORONOI图法基础上,融合了对自主车辆和周围环境之间的位置关系的贝叶斯预测,一旦预定任务的动态环境发生重大变化,它可以产生机动目标沿某方向前进信息的预测先验知识,通过局部多次重规划生成避障路径,直至自主车辆完成既定任务;仿真实验证明了该规划控制方法可有效帮助自主车辆在不确定环境中实施避障策略。 In the dynamic surroundings, it' s a challenge to the autonomous vehicles (AVs) to acquire the prior knowledge about the surroundings. A Bayesian forecasting--based inference for mobile objects motion state using Dynamic Bayesian Network (DBN) model is studied in this paper. A novel Bayesian forecasting--based collision avoidance path planning for the AV using DBN is presented. This ap- proach fuses the forecasting--based relationship between the AV and the objects in the surrounding into VORONOI graph planning. Once the surrounding changes dramatically, this method may develop the prior knowledge complying with the object' s motion and generate the way- points for AV by local re--planning. Simulation results demonstrate this planning approach can valid the collision avoidance strategy for the AV in the uncertain surroundings.
出处 《计算机测量与控制》 CSCD 北大核心 2010年第7期1660-1663,共4页 Computer Measurement &Control
基金 国家自然科学基金重大研究项目(90205019)
关键词 自主车辆 不确定环境 避障 贝叶斯预测 autonomous vehicle uncertain surrounding collision avoidance Bayesian forecasting
  • 相关文献

参考文献12

  • 1Blackmore L,Li H,Williams B.A prohabilistic approach to Optimal Robust Path Planning with Obstacles[A].Proceedings of the American Control Conference[C].2006.
  • 2McLain T W,Chandler P R,Pachter M A.Decomposition Strategy for Optimal Coordination of Unmanned Air Vehicles[A].ACC[C].2000,369-373.
  • 3Chandler P R,Rasmussen S,Pachter M A.Cooperative Path Planning[A].ACC[C].2001,50-55.
  • 4于少伟,曹凯.基于动态目标位置的智能车辆动态避障控制研究[J].计算机工程与应用,2008,44(26):242-245. 被引量:8
  • 5王随平,熊光辉,陈勇.深海集矿机模型车避障系统设计[J].计算机测量与控制,2008,16(5):640-642. 被引量:4
  • 6段华,赵东标.动态环境下基于势场原理的避障方法[J].华中科技大学学报(自然科学版),2006,34(9):39-41. 被引量:20
  • 7Russell S,Norvig P.Artificial Intelligence:A Modern Approach,2nd edition[M].Prentice Hall,2003.
  • 8Friedman N,Murphy K,Russell S.Learning the Structure of Dynamic Probabilistic Networks[A].Proc.Conf.on Uncertainty in Artificial Intelligence[C].1998,139-147.
  • 9Murphy K.Dynamic Bayesian Networks:Representation,Inference and Learning[D].PhD thesis,Computer Science Division,UC Berkeley,2002.
  • 10Kayaalp M.Learning Dynamic Bayesian Network Structures from Data[D].PhD thesis,University of Pittsburgh,2003.

二级参考文献21

  • 1陈华华,杜歆,顾伟康.基于神经网络和遗传算法的机器人动态避障路径规划[J].传感技术学报,2004,17(4):551-555. 被引量:23
  • 2段华,赵东标.动态环境下基于势场原理的避障方法[J].华中科技大学学报(自然科学版),2006,34(9):39-41. 被引量:20
  • 3段华,赵东标.一种新的移动机器人动态避障方法[J].应用科学学报,2006,24(5):525-528. 被引量:7
  • 4马志涛,侯涛,张红兵,董海鹰.倒立摆系统的T-S模糊控制研究[J].微计算机信息,2006,22(10S):69-71. 被引量:12
  • 5A0ki T.Motion planning for multiple obstacles avoidance of autonomous mobile robot using hierarchical fuzzy rules[C]//Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent System(MFI'94),Las Vegas, 1994:265-271.
  • 6Ge S S,Cui Y J.Dynamic motion planning for mobile robots using. potential field method[J].Autonomous Robots, 2002,13 ( 1 ) : 207-222.
  • 7Fiorini P,Shiller Z.Motion planning in dynamic environments using velocity obstacles[J].The International Journal of Robotics Research, 1998,17(7) :760-772.
  • 8Rude M.Collision avoidance by using space time representations of motion processes[J].Autonomous Robots, 1997,4( 1 ) : 101-119.
  • 9Paolo Fiorini,Zvi Shiller.Motion planning in dynamic environments using velocity obstacles[J].The International Journal of Robotics Research,1998,17(7):760-772.
  • 10Wang Y F,Chirikjian G S.A new potential field method for robot path planning[J].Proceeding of the IEEE International Conference on Robotics & Automation.2000,2:977-982.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部