期刊文献+

基于端元提取的超光谱图像目标检测算法 被引量:2

An Endmember Extraction Based Target Detection Algorithm for Hyperspectral Image
在线阅读 下载PDF
导出
摘要 针对超光谱图像中目标检测问题,提出了一种基于端元提取的超光谱图像目标检测算法。该算法在未知任何先验信息条件下,对超光谱数据进行基于噪声调节的主成分分析,通过保留信噪比较大的主成分,有效降低超光谱图像中的噪声水平;然后利用基于无监督正交子空间投影的端元提取算法获取图像中的端元矢量,将各端元矢量代入改进的约束能量最小化算子中,从而实现超光谱图像的目标检测。实验结果表明,该算法不但可以得到较好的目标检测结果,在运算性能上也具有一定的优势。 A new target detection algorithm based on endmember extraction for use in hyperspectral image was proposed.On the condition of no prior knowledge,noise adjusting based principal component analysis was performed to the hyperspectral images.The noise level could be reduced by retaining several principal components with high signal-noise ratio.Then,endmember extraction method based on unsupervised orthogonal subspace projection was used to extract the endmember vectors,and the improved Constrained Energy Minimum(CEM) is implemented by using the endmember vectors for realizing the target detection of hyperspectral image.Experimental results show that the proposed algorithm has both better detection results and lower computational complexity.
出处 《电光与控制》 北大核心 2010年第8期45-48,共4页 Electronics Optics & Control
关键词 目标检测 超光谱图像 端元提取 遥感 target detection hyperspectral image endmember extraction remote sensing
  • 相关文献

参考文献9

二级参考文献41

共引文献57

同被引文献23

  • 1吴波,张良培,李平湘.非监督正交子空间投影的高光谱混合像元自动分解[J].中国图象图形学报(A辑),2004,9(11):1392-1396. 被引量:27
  • 2寻丽娜,方勇华,李新.高光谱图像中基于端元提取的小目标检测算法[J].光学学报,2007,27(7):1178-1182. 被引量:27
  • 3MARGALIT A, REED I S, GAGLIARDI R M. Adaptive optical target detection using correlated images[A]. IEEE Transactions on Aerospace and Electronic Systems[C]. 1985. 394-405.
  • 4REED I S, YU X. Adaptive multiple-band CFAR detection of anoptical pattern with unknown spectral distribution[J]. IEEE Transaction on Acoustics, Speech and Signal Processing, 1990, 38(10): 1760-1770.
  • 5HUCK A, GUILLAUME M. Asymptotic.ally CFAR-unsupervised target detection and discrimination in hyperspectral images with anomalous-component pursuit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11): 3980-3992.
  • 6GAO G, LIU L, ZHAO L, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAP. images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685-1697.
  • 7ACITO N, DIANI M, CORSINI G A. New algorithm for robust estimation of the signal subspace in hyperspectral images in the presence of rare signal components[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11):3844-3856.
  • 8CAPOBIANCO L, GARZELLI A, CAMPS-VALLS G Target detection with semisupervised kernel orthogonal subspace projection[J] IEEE Transactions on Geoscience and Remote Sensing, 2009, 47 3822-3833.
  • 9VASILIS A, PETER W, MICHAEL G. Anomaly detection through a bayesian support vector machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 59(2):277-287.
  • 10EGELHAAF M. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly II Figure-detection cells, a new class of visual interneurones[J]. Biol Cybern, 1985, 52: 195-209.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部