期刊文献+

流形学习算法中的参数选择问题研究 被引量:11

ON PARAMETER SELECTION IN MANIFOLD LEARNING ALGORITHM
在线阅读 下载PDF
导出
摘要 流形学习(Manifold Learning)算法是近年来发展起来的非线性降维机器学习算法。等度规特征映射Isomap(Isometric feature mapping)和局部线性嵌入LLE(Locally Linear Embedding)是两种典型的流形学习算法。通过实验比较和分析两种算法中邻接参数K和采样点数N的选取对降维结果以及执行时间的影响,实验结果表明Isomap对邻接参数K和采样点数N具有较高的容忍度,而LLE算法在计算速度上优势明显。 Manifold learning algorithms are nonlinear dimensionality reduction machine learning algorithms rising in recent years.Isometric feature mapping(Isomap) and local linear embedding(LLE) are two typical manifold learning algorithms.Comparison and analysis of the effect of the selection of adjoining parameter K and sampling point number N in two algorithms on the reduction results and computational efficiency are performed through experiment.Experimental results suggested that Isomap has higher tolerance to the parameter K and sampling points number N than LLE,but LLE has conspicuous advantage in computational speed.
出处 《计算机应用与软件》 CSCD 2010年第6期84-85,102,共3页 Computer Applications and Software
基金 上海市选拔培养优秀青年教师基金项目(06XPYQ48)
关键词 等度规特征映射 局部线性嵌入 流形学习 非线性降维 Isometric feature mapping Local linear embedding Mainfold learning Nonlinear dimensionality reduction
  • 相关文献

参考文献6

  • 1Tenenbaum J B,Silva V,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290:2319-2323.
  • 2Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290:2323-2326.
  • 3Saul L K,Roweis S T.Think globally,fit locally:unsupervised learning of low dimensional manifolds[J].Journal of Machine Learning Research,2003,4:119-155.
  • 4Silva V,Tenenbaum J B.Global versus local methods in nonlinear dimensionality reduction[C] //Advances in Neural Information Processing Systems 15.Cambridge:MIT Press,2003,705-712.
  • 5尹峻松,肖健,周宗潭,胡德文.非线性流形学习方法的分析与应用[J].自然科学进展,2007,17(8):1015-1025. 被引量:19
  • 6He X,Yan S,Hu Y,et,al.Face recognition using laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):328-340.

二级参考文献44

  • 1陈维恒 李兴校.黎曼几何引论[M].北京:北京大学出版社,2002..
  • 2Zhang CS,Wang J,Zhao NY,et al.Reconstruction and analysis of multi-pose face images based on nonlinear dimen-sionality reduction.Pattern Recognition,2004,37(2):325-336.
  • 3Jolliffe IT.Principal Component Analysis.New York:Springer-Verlag,1986.
  • 4Hyvarinen A,Oja E.Independent component analysis:Algorithms and applications.Neural Networks,2000,13(4-5):411-430.
  • 5Balakrishnama S,Ganapathiraju A.Linear discriminate analysis.Institute for Signal and Information Processing,Mississippi State University,1998.Available at http://www.isip.msstate.edu/publications/reports/isip_internal/1998/linear_discrim_analysis/lda_theory.pdf.
  • 6Lawrence K,Roweis S.An introduction to locally linear embedding.Technical Report,Gatsby Computational Neuro-science Unit,UCL,2001.
  • 7Kohonen T.Self-Organizing Maps (Eds.2).Springer.1995.
  • 8Raymer F,Punch L,Goodman D,et al.Dimensionality reduction using genetic algorithm.IEEE Trans on Evolutionary Computation,2000,4:164-171.
  • 9Tenenbaum JB,Silva V de,Langford JC.A global geometric framework for nonlinear dimensionality reduction.Science,2000,290:2319-2323.
  • 10Roweis S,Saul LK.Nonlinear dimensionality reduction by locally linear embedding.Science,2000,290:2323-2326.

共引文献18

同被引文献73

引证文献11

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部