期刊文献+

酵母蛋白质相互作用网络中Hub蛋白分类及作用规律的研究

Study on Hub Protein Classification and Interaction Law in Protein-Protein Interaction Network of Saccharomyces cerevisiae
原文传递
导出
摘要 在蛋白质相互作用网络层面研究蛋白质的生物学功能已成为系统生物学的一项重要工作。Hub蛋白是指蛋白质相互作用网络中连接数较高的蛋白,在生命活动中行使着极为重要的功能。然而仅仅依靠连接数并不能准确反映出蛋白质在生物学网络中的真实地位,连接数相近的Hub蛋白在生物网络中发挥的作用未必同等重要。依据Gene ontology数据库中的生物学注释信息,使用X均值聚类法将Hub蛋白分为系统、组分和过程Hub三类;对这三类Hub蛋白构成的子网络进行研究,发现系统Hub和非Hub蛋白子网络分布均匀,而组分Hub和过程Hub的子网络有明显的模块性;进一步引进描述各类Hub蛋白之间相互作用倾向性的参数并对其进行分析,结果表明:三类Hub蛋白之间(包括同一类Hub蛋白间)、非Hub蛋白与Hub蛋白间相互作用的倾向性强烈,而反过来,三类Hub蛋白与非Hub蛋白之间、非Hub蛋白内部相互作用的倾向性很弱。 It is important to study biological function of proteins based on protein-protein network in system biology. Hub protein, as protein with high connected degree, plays an important role in biological processes. However,connect degree can not describe protein function in biological network, since Hub proteins with equally or similar connect degree are usually not equal important. Using X-means clustering, Hub proteins were classified into three categories based on biological annotation information in Gene Ontology. Results indicate that the distribution of sub-networks of system Hub and non-Hub proteins is uniform, that of process Hub and component Hub proteins are obviously modular. The parameter, protein class interaction bias (PCIB), was introduced to describe interaction bias between or within Hub proteins and non-Hub proteins. Results showed that interaction bias among Hub proteins, between non-Hub proteins and hub proteins were strong, PCIB values among non-Hub proteins or between Hub and non-Hub proteins are very small.
作者 秦笙 蔡禄
出处 《生物物理学报》 CAS CSCD 北大核心 2010年第6期488-496,共9页 Acta Biophysica Sinica
基金 国家自然科学基金项目(60761001)~~
关键词 蛋白质相互作用网络 Hub蛋白 GENE Ontology注释 分类 Protein-protein interaction network Hub protein Gene Ontology annotation Classification
  • 相关文献

参考文献18

  • 1刘中扬,李栋,朱云平,贺福初.蛋白质相互作用网络进化分析研究进展[J].生物化学与生物物理进展,2009,36(1):13-24. 被引量:11
  • 2陈润生.与生物信息学相关的两个前沿方向——非编码基因和复杂生物网络[J].生物物理学报,2007,23(4):290-295. 被引量:9
  • 3Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature, 2001, 411:41-42.
  • 4Li SM, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD J, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual JF, Lamesch P, Xu L, Tewari M, Wong SL, Zhang L V, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li QR, Gabel HW, Elewa A, Baumgartner B, Rose D J, Yu HY, Bosak S, Sequerra R, Fraser A, Mango SE, Saxton WM, Strome S, van den Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M. A map of the interactome network of the metazoan C. elecjans. Science, 2004, 303: 540-543.
  • 5Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Waihout A J, Cusick ME, Roth FP, Vidal M. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 2004, 430 88-93.
  • 6Salwinski L, Miller CS, Smith A J, Pettit FK, Bowie JU, Eisenberg D. The database of interacting proteins: 2004 update. Nucl Acids Res, 2004, 32:D449-451.
  • 7Bairoch A, Apweiler R, Wu CH. Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang HZ, Lopez R, Magrane M,Martin M J, Natale DA, O'Donovan C, Redaschi N, Yeh LSL. The universal protein resource (UniProt). Nucl Acids Res, 2005, 33(Database Issue): D154-D159.
  • 8Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, IsseI-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet, 2000, 25(1): 25-29.
  • 9Jin GG, Zhang SH, Zhang XS, Chen L. Hubs with network motifs organize modularity dynamically in the protein-protein interaction network of yeast. PLoS_ONE, 2007, 2(11): e 1207.
  • 10Pelleg D, Moore A. X-means: extending K-means with efficient estimation of the number of cluster. Proceeding of the 17th International Conf on Machine Learning. San Francisco, USA, 2000. 727-734.

二级参考文献89

  • 1石铁流,李亦学.系统生物学的现状与展望[J].中国科学基金,2005,19(5):282-286. 被引量:5
  • 2Dobzhansky T. Nothing in biology makes sense except in light of evolution. Am Biol Teacher, 1973, 35: 125-129
  • 3Von Mering C, Jensen L J, Kuhn M, et al. STRING 7-recent developments in the integration and prediction of protein interactions. Nucleic Acids Res, 2007, 33(Database issue): D358-D362
  • 4Fraser H B, Hirsh A E, Steinmetz L M, et al. Evolutionary rate in the protein interaction network. Science, 2002, 296(5568): 750-752
  • 5Jordan I K, Wolf Y I, Koonin E V. No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol Biol, 2003, 3(1): 1
  • 6Fraser H B, Wall D P, Hirsh A E. A simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evol Biol, 2003, 3(1): 11
  • 7Bloom J, Adami C. Apparent dependence of protein evolutionary rate on number of interactions is linked to biases in protein-protein interactions data sets. BMC Evol Biol, 2003, 3(1): 21
  • 8Pal C, Papp B, Hurst L D. Highly expressed genes in yeast evolve more slowly. Genetics, 2001, 158(2): 927-931
  • 9Fraser H B, Hirsh A. Evolutionary rate depends on number of protein-protein interactions independently of gene expression level. BMC Evol Biol, 2004, 4(1): 13
  • 10Bloom J D, Adami C. Evolutionary rate depends on number of protein-protein interactions independently of gene expression level: Response. BMC Evol Biol, 2004, 4(1): 14

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部