期刊文献+

一种提高结核菌痰涂片显微图像质量方法 被引量:2

Methodfor Improving Image Quality of Sputum Smear Microscopy
原文传递
导出
摘要 通过痰涂片镜检法检测结核抗酸杆菌,是识别和诊断结核病的一种快速、价廉和特定的检测方法。为提高结核病痰涂片显微图像的质量,提出了一种基于多帧不同曝光图像信息融合,扩展被检测显微图像的动态范围,提高检测视野显微图像质量的实现方法。首先在保持CCD曝光时间不变的条件,通过计算机控制圆盘型光学梯度衰减片旋转定位的方法,摄取同一视场多帧不同曝光量的显微图像序列,从而获取场景的高动态范围显微图像信息。然后利用拉普拉斯金字塔算法将显微图像进行分层,采用图像梯度与信息熵相结合对层次图像进行评价,分配相应的合成权重系数,并用拉普拉斯金字塔逆算法,合成一帧高质量的图像。实验表明,所提出方法能有效地表达亮区和暗区的场景信息,增强图像的细节特征,提高痰涂片显微成像的质量,有利于提高显微图像智能检测的精度。 Sputum smear microscopy to detect acid-fast bacilli (AFB) is a rapid, inexpensive, and highly specific tool for identi- fying persons with active tuberculosis (TB). A novel method based on multi-frame image information fusion is presented by extending the dynamic range of the microscopic image in order to improve the quality of TB sputum smear microscopic image. Maintained the CCD exposure time, a sequence of microscopic images in the same field with different exposure is obtained by rotating disk-type optical attenuation gradient film controlled by computer in order to obtain high dynamic range scene microscopic image information. After that, the Laplacian pyramid algorithm is used to divide the microscopic image into some layers. The weight of each level is designed according to the information of the image which is evaluated by the image grads and entropy. Finally, the inverse Laplacian pyramid algorithm is applied to synthesize a high-quality image. It is proved that the method proposed in this paper can effectively express the image information in the bright areas and dark areas. It can enhance the image details and improve the quality of microscopy imaging system. Therefore, the method is propitious to the intelligent detection of microscopic image.
出处 《应用激光》 CSCD 北大核心 2010年第3期226-231,共6页 Applied Laser
基金 上海市科学技术委员会基础研究重点基金资助项目(项目编号:08JC14002000)
关键词 显微图像 信息融合 光学梯度衰减片 信息熵 图像细节 microscopy image information fusion optical attenuation gradient film entropy image detail
  • 相关文献

参考文献1

二级参考文献7

  • 1Mann S, Picard R W. On being ‘undigital' with digital cameras: extending dynamic range by combining differently exposed pictures[C]//Proceedings of IS T' s 48th Annual Conference. Washington DC: Society for Imaging Science and Technology, 1995 422-428.
  • 2Madden B C. Extended intensity range imaging[R]. MS-CIS-93-96, Pennsylvania: GRASP Laboratory of University of Pennsylvania, 1993.
  • 3Debevec P E, Malik J. Recovering high dynamic range radiance maps from photographs [C]//SIGGRAPH 97 Conference Proceedings. New York: ACM, 1997:369-378.
  • 4Robertson M A, Borman S, Stevenson R L. Estima tion-theoretic approach to dynamic range enhance ment using multiple exposures[J]. Journal of Elec tronic Imaging, 2003,12(2):219-228.
  • 5Szeliski R. System and process for improving the uniformity of the exposure and tone of a digital image [P]. US: 6687400, 2004-02-03.
  • 6Goshtasby A A. Fusion of multi-exposure images [J]. Image and Vision Computing, 2005,23(6) :611- 618.
  • 7Grossberg M D, Nayar S K. What is the space of camera response functions[C]//Proceedings of IEEE Computer Vision and Pattern Recognition. Wisconsin, USA: IEEE, 2003,II:602-609.

共引文献8

同被引文献73

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部