期刊文献+

训练样本数目选择对面向对象影像分类方法精度的影响 被引量:25

The Effect of the Size of Training Sample on Classification Accuracy in Object-oriented Image Analysis
原文传递
导出
摘要 面向对象遥感影像分类中的样本选择与基于像素的方法有很大不同,基于统计学理论,研究了面向对象方法的样本数量选择问题。首先,针对面向对象方法的特点,对影像特征空间进行分析,结果表明面向对象方法中要求训练样本的数量可以显著地减少。然后,在遥感影像分类实验中,借助样本数量与波段数目的关系,验证了理论分析的结果。 As opposed to per-pixel classification, the selection of training samples is different in object-oriented method. Based on statistical theory, the number of training samples required in object-oriented classification is studied in this paper. First,feature space analysis of images is implemented in object-oriented classification, which shows that the number of training samples needed for object-oriented classification is much less than that in per-pixel classification. Then, an experiment of remote sensing image classification is carried out to verify the authenticity based on the relations between samples and bands.
作者 薄树奎 丁琳
出处 《中国图象图形学报》 CSCD 北大核心 2010年第7期1106-1111,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(40771140) 河南省科技攻关计划项目(092102210307) 河南省高等学校青年骨干教师资助计划 河南省科技厅基础与前沿技术研究计划(092300410043)
关键词 分类 面向对象 训练样本 遥感影像 classification, object-oriented, training samples, remote sensing image
  • 相关文献

参考文献11

  • 1Baatz M, Benz U, Dehghani S, et al. Ecognition Professional User Guide [ EB/OL ] [ 2009- 02- 25 ]. http://www, definiens imaging, com.
  • 2明冬萍,骆剑承,沈占锋,汪闽,盛昊.高分辨率遥感影像信息提取与目标识别技术研究[J].测绘科学,2005,30(3):18-20. 被引量:111
  • 3陈云浩,冯通,史培军,王今飞.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报(信息科学版),2006,31(4):316-320. 被引量:255
  • 4Geneletti D, Gorte B G H. A method for object-oriented land cover classification combining Landsat TM data and aerial photographs[ Jl. International Journal of Remote Sensing, 2003, 24(6) : 1273-1286.
  • 5Hughes G F. On the mean accuracy of statistical pattern recognizers [ J ]. IEEE Transactions on Information Theory, 1968, 14(1) : 55-63.
  • 6Foody G M, Arora M K. An evaluation of some factors affecting the accuracy of classification by an artificial neural network [ J ]. International Journal of Remote Sensing, 1997, 18 (4): 799-810.
  • 7Foody G M, McCulloch M B, Yates W B. The effect of training set size and composition on artificial neural network classification [ J]. International Journal of Remote Sensing, 1995, 16 (9):1707-1723.
  • 8Shahshahani B M, Landgrebe D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1087-1095.
  • 9Foody G M, Mathur A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM [ J]. Remote Sensing of Environment, 2006, 103(2) : 179-189.
  • 10Piper J. The effect of zero feature correlation assumption on maximum likelihood based classification of chromosomes [ J ]. Signal Processing, 1987, 12( 1 ) : 49-57.

二级参考文献18

  • 1徐胜荣,李忠兴.自然景物中桥梁目标识别方法的研究[J].浙江大学学报(自然科学版),1995,29(3):275-281. 被引量:18
  • 2Claus B. Towards fully automatic generation of city models [ A ]. In: International Archives of Photogrammetry and Remote Sensing [ C ]. Amsterdam: XIX. 2000.
  • 3Jong-Hyeok JEONG, Masataka TAKAGI. Extraction Of Bridge Positions From Ikonos Images For Accuracy Control of Bridge Database [EB/OL]. http: //www. gisdevelopment. net/aars/acrs/2002/vhr/172. pdf
  • 4Iio Y,Omatu S.Category Classification Method Using a Self-organizing Neural Network[J].International Journal of Remote Sensing,1997,18(4):829-845
  • 5Ricotta C.Evaluating the Classification Accuracy of Fuzzy Thematic Maps with a Simple Parametric Measure[J].International Journal of Remote Sensing,2004,25(11):2 169-2 176
  • 6Vander S C J,Jong S M,Roo A P J.A Segmentation and Classification Approach of IKONOS-2 Imagery for Land Cover Mapping to Assist Flood Risk and Flood Damage Assessment[J].International Journal of Applied Earth Observation and Geoinformation,2003 (4):217-229
  • 7Huang C,Davis L S,Townshend J R G.An Assessment of Support Vector Machines for Land Cover Classification[J].International Journal of Remote Sensing,2002,23(4):725-749
  • 8Magnussen S,Boudewyn P,Wulder M.Contextual Classification of Landsat TM Images to Forest Inventory Covertypes[J].International Journal of Remote Sensing,2004,25(12):2 421-2 440
  • 9Volker W.Object-based Classification of Remote Sensing Data for Change Detection[J].ISPRS Journal of Photogrammetry & Remote Sensing,2004 (58):225-238
  • 10eCognition,User Guide.Definiens Imaging GmbH,Munich[OL].http://www.definiensimaging.com/product.htm,2002

共引文献356

同被引文献252

引证文献25

二级引证文献229

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部