期刊文献+

地铁隧道竖井位置优化数值模拟研究 被引量:7

Numerical simulation to optimize the position of subway's shaft
在线阅读 下载PDF
导出
摘要 考虑通风竖井对地铁内热湿环境及压力变化的影响,进一步优化地铁内竖井的位置,本文采用移动网格和滑移交界面技术分别对竖井位于列车加速段、匀速段和减速段进行三维非稳态数值计算。结果表明,采用移动网格技术对无竖井隧道模拟计算结果与国外试验吻合,竖井位于列车匀速段内且靠近车站出站端能有效地利用列车活塞作用排除地铁内热量,能有效减小入口断面最大压力和压力梯度,但出口断面产生最大压力和压力梯度。综合考虑竖井对地铁内通风及空气动力学效应的影响,竖井应考虑列车运行模式,设置于列车匀速行驶区间段内且靠近车站出站端。 To consider the influence of ventilation shaft on environment and pressure change in the subway and optimize the shaft's position,the three-dimensional unsteady numerical analysis using the moving mesh and the sliding interface method was carried out when the shaft situates on the acceleration segment,the uniform motion segment and the deceleration segment of trains.The results show that the numerical result of the tunnel without any shaft agrees with the foreign experimental data.It is extremely beneficial to utilize train-induced piston to exclude the heat when the shaft locates on the uniform motion segment of trains and near to the outlet of station.Meantime the maximum pressure amplitude and the pressure gradient of the inlet could also decrease effectively,but the maximum pressure amplitude and the pressure gradient of the outlet would increase.To take the effect of shaft on ventilation and aerodynamics into account,the shaft should be placed on the uniform motion segment of trains and near to the outlet of station with consideration of the running mode of trains.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2010年第3期569-573,共5页 Chinese Journal of Computational Mechanics
关键词 地铁隧道 竖井位置 移动网格 优化 subway tunnel the shaft's position moving mesh optimization
  • 相关文献

参考文献8

二级参考文献103

  • 1梅元贵,赵海恒,刘应清.高速铁路隧道压力波数值分析[J].西南交通大学学报,1995,30(6):667-672. 被引量:41
  • 2Mackrodt P A. Zum Luftwiderstand, yon Schienenfahrzeugen. DFVLR AVA IB. 251 80C 08. Goettingen, Ger:DFVLR, 1980.
  • 3Mackrodt P A, Steinheuer J, Stoffers G. Aerodynamisch optimale Kopfformen fiir Triebziigen, DFVLR IB 152 79 A 27. Coettingen, Ger: DFVLR, 1980.
  • 4Brockie N J, Baker C J. The aerodynamic drag of high speed trains. J Wind Eng Ind Aerodyn, 1990, 34:273-290.
  • 5Baker C J, Wright N G, Johnson, Gaylard A P. Inland Surfance Transport LINK Scheme. Final Proj Pep, Univ Birmingham. Birmingham, UK, 1999.
  • 6Paradot N, Talcotte C, Willaime A, Guccia L, Bouhadana JL. Methodology for computing the flow around a high speed train for drag estimation and validation using wind tunnel experiments. In: Proc World Congr Railw Res, Tokyo.Tokyo: Railr Tech Res Inst (CD-Rom). 1999.
  • 7Schulte-Werning B, Matschke G, Williame A, Malfatti A, Mancini G, Pecorni M. High speed trains with bocie fairings: European research into reducing aerodynamic drag and noise. In: Proc World Congr Railw Res, Tokyo. Tokyo:Railr Tech Res Inst (CD-Rom), 1999.
  • 8Althammer K, Baldauf W, Loelgen T. Considerations for high performance pantographs. In: Proc World COngr Railw Res, Tokyo: Tokyo: Railr Tech Res Inst (CD-Rom),1999.
  • 9Maeda T, Kinoshita M, Kajiyama H, Tanemoto K. Aerodynamic drag of Shinkansen electric car; series 0, series 200,series 100. Q Pep Railr Tech Res Inst, 1989, 30(1): 48-56.
  • 10Peters J L. Windkanaluntersuchung zum Verhalten von Schienenfahrzeugen Unter Windeinfluss auf Dammen und Brüken mit und ohne Schutzeinrichtun-gen. L333-TB07/90. Ger: Krauss Maffei Verkehrstechnik, 1990.

共引文献81

同被引文献76

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部