期刊文献+

一类子空间跟踪方法的改进 被引量:2

Modification Algorithms for a Class of Subspace Tracking Methods
在线阅读 下载PDF
导出
摘要 子空间分析方法广泛应用于信号处理领域,运算复杂度的高低,是决定算法实时性的关键。本文通过对DPM类、OJA类子空间跟踪方法的分析,在保证算法稳健的前提下,提出一类简化运算量的子空间跟踪方法(MFDPM、MFOO-JA)。实验仿真表明,MFDPM、MFOOJA与FDPM、FOOJA具有相似的收敛速度和稳态误差。在有限字长条件下,MFDPM、MFOOJA对舍入误差累积不敏感,具有很强的鲁棒性,并保证子空间基的标准正交收敛。 Subspace analysis is a frequently encountered method in many signal processing fields. Computational complexity is a very important point for real time implementation. Starting from analysis of DPM and OJA classes of subspaee tracking methods, we pro- posed modified methods for them, named as MFDPM and MFOOJA, which are numerically stable and less computational complexity. Simulation results verified that the proposed algorithms have similar convergence speed and steady-state error compared to FDPM or FOOJA. And the proposed algorithms are less sensitive to round-off error accumulation under the finite word length condition and guarantee orthonormality convergence, so which are robust.
出处 《信号处理》 CSCD 北大核心 2010年第5期741-745,共5页 Journal of Signal Processing
基金 武器装备预研项目(41901140401)
关键词 数据投影 子空间跟踪 运算复杂度 数值稳健 标准正交 data projection subspace tracking computational complexity numerical stability orthonormality
  • 相关文献

参考文献10

  • 1M. Moonen, P. Van Dooren, J. Vandewalle. Updating singular value decompositions: A parallel implementations [C]. Proc. SPIE Adv. Alg. Archi. Sig. Proc. , 1989, 80-91.
  • 2P. A. Thompson. An adaptive spectral analysis technique for unbiased frequency estimation in the presence of white noise[C]. Proc. 13^th Asilomar Conf. Circuits, Syst. Comput. , Pacific Grove, CA, 1980.
  • 3J. Yang, M. Kaveh. Adaptive eigensubspace algorithms for direction or frequency estimation and tracking [ J ]. IEEE Trans Acoust, Speech, Signal Processing, 1988, 36(2) :241-251.
  • 4E. Oja. Principal components, minor components, and linear neural networks [ J ]. Neural Networks, 1992, 5 (Dec) :927-935.
  • 5X. G. Doukopoulos, G. V. Moustakides. The fast data projection method for stable subspace tracking [ C ]. in 13^th Europ. Signal Process. Conf., EUSIPCO'2005, Antalya, Turkey, Sep. 2005.
  • 6S. Bartelmaos, K. Abed-Meraim. Principal and minor subspaee tracking: Algorithms & stability analysis [ C]. in Proc. IEEE ICASSP'06, Toulouse, France, 2006, III: 560-563.
  • 7S. Bartelmaos and K. Abed-Meraim. An efficient & stable algorithm fcr minor subspace tracking and stability analysis [ C ]. IEEE Int. Conf. Acoustics, Speech, Signal Processing(ICASSP), Honolulu, HI, Apr. 2007, vol. III: 1301-1304.
  • 8X. G. Doukopoulos, G. V. Moustakides. Fast and Stable Subspace Tracking [J].IEEE Trans. Signal Process., Apr. 2008,56(4) : 1452-1465.
  • 9R. Badeau, G. Richard, and B. David. Fast and Stable YAST Algorithm for Principal and Minor Subspace Tracking [ J ]. IEEE Trans Signal Process, 2008, 56 ( 8 ) : 3437 -3446.
  • 10L. Yang, S. Attallah, G. Mathew, and K. A. Meraim. Analysis of Orthogonality Error Propagation for FRANS and HFRANS Algorithms [ J ]. IEEE Trans Signal Process, 2008, 56(9) : 4515-4521.

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部