期刊文献+

基于Gauss-Markov卡尔曼滤波的电离层数值同化现报预报系统的构建--以中国及周边地区为例的观测系统模拟试验 被引量:16

Development of an ionospheric numerical assimilation nowcast and forecast system based on Gauss-Markov Kalman filter—An observation system simulation experiment taking example for China and its surrounding area
在线阅读 下载PDF
导出
摘要 本文给出了一个基于Gauss-Markov卡尔曼滤波的电离层数据同化系统的初步构建和试验结果.我们选择中国及周边地区部分涉及电离层观测的台站(包括子午工程台站、中国地壳形变网和部分IGS台站)作为观测系统进行模拟试验,背景场利用IRI模式,观测值则由NeQuick模式计算得到.我们的同化结果表明,采用Kalman滤波算法,把部分斜TEC同化到背景模式当中,能够获得较好的同化结果,说明我们设计的算法可行、所选择的各种参数比较合理,采用Gauss-Markov假设进行短期预报也取得了较合理的结果.本项研究经过进一步的改进和完善,可以用来对中国地区的电离层进行现报和短期预报,一方面满足相关空间工程应用,另一方面可以提升现有观测系统的科学意义. In this paper, we constructed an ionospheric data assimilation system based on Gauss-Markov Kalman filter and gave some test results. We chose some ionosphere stations (including meridional project stations, China lithosphere deformation GPS network, part of IGS stations) in China and its surrounding area as observation system to do the simulation experiment. International Reference Ionosphere (IRI) is chosen to be the background model, while NeQuick model output is taken to be the observations. Our assimilation results show that it can get good estimation of ionosphere electron density by ingesting the observed slant TEC data into the model by Kalman filter. It illustrates that our assimilation algorithm is feasible and the selected parameters are reasonable. We also obtained reasonable short time forecast results by Gauss-Markov assumption.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2010年第4期787-795,共9页 Chinese Journal of Geophysics
基金 中国博士后科学基金项目(20080440066) 国家自然科学基金(40904037) 空间天气学国家重点实验室开放课题资助
关键词 电离层 数据同化 卡尔曼滤波 误差协方差 Ionosphere, Data assimilation, Kalman filter, Error covariance
  • 相关文献

参考文献23

  • 1Yue X,Wan W,Liu L,et al.Data assimilation of incoherent scatter radar observation into a one-dimensional midlatitude ionospheric model by applying ensemble Kalman filter.Radio Sci.,2007,42:RS6006,doi:10.1029/2007RS003631.
  • 2Wang C,Hajj G,Pi X,et al.Development of the global assimilative ionospheric model.Radio Sci.,2004,39:RSIS06,doi:10.1029/2002RS002854.
  • 3Schunk R W,Scherliess L,Sojka J J,et al.Global Assimilation of Ionospheric Measurements(GAIM).Radio Sci.,2004,39:RSIS02,doi:10.1029/2002RS002794.
  • 4Bust G S,Gamer T W,Gaussiran II T L.Ionospheric Data Assimilation Three-Dimensional(IDA3D):A global,multisensor,electron density specification algorithm.J.Geophys.Res.,2004,109:A11312,doi:10.1029/2003JA010234.
  • 5王跃山.数据同化——它的缘起、含义和主要方法[J].海洋预报,1999,16(1):11-20. 被引量:49
  • 6郭兼善,尚社平,张满莲,罗熙贵,郑红,史建奎,张清毅.空间天气探测数据的同化处理[J].中国科学(A辑),2000,30(z1):115-118. 被引量:5
  • 7Richmond A D,Kamide Y.Mapping electrodynamic features of the high-latitude ionosphere from localized observations:technique.J.GeoPhys.Res.,1988,93; 5741-5759.
  • 8Howe B M,Runciman K,Secan J A.Tomography of the ionosphere:four-dimensional simulations.Radio Sci.,1998,33(1):109-128.
  • 9徐继生,邹玉华,马淑英.GPS地面台网和掩星观测结合的时变三维电离层层析[J].地球物理学报,2005,48(4):759-767. 被引量:27
  • 10Pi X,Wang C,Hajj G A,et al.Estimation of E×B drift using a global assimilative ionospheric model:an observation system simulation experiment.J.Geophys.Res.,2003,108(A2):1075-1088.

二级参考文献64

  • 1丑纪范.天气数值预报中使用过去资料的问题[J].中国科学,1974,6:635-644.
  • 2丑纪范.天气数值预测中使用过去资料的问题(油印本)[M].,1961..
  • 3顾震潮.-[J].气象学报,1958,29(2):93-98.
  • 4王跃山.客观分析基础理论.全国数值预报进修班讲义[M].联合数值预报中心,1983..
  • 51,Peredo M, Fox N, Thompson B. Scientists track Solar event all the way to Earth. EOS, 1997, 78(43): 477~483
  • 62,Kamide Y, Richmond A D, Matsushita S. Estimation of ionospheric electric fields, ionospheric currents, and field aligned currents from ground magnetic records. J Geophys Res, 1981, 86: 801~ 813
  • 73,Richmond A D, Camide Y. Mapping electrondynamic features of the high-altitude ionosphere from localized observations: technique. J Geophys Res, 1988, 93: 5 741~ 5 759
  • 84,Schunk R W, Sojka J J. Ionosphere-thermosphere space weather issues. J Atmos Solar Terr Phys, 1996, 58: 1 527~ 1 574
  • 9Yeh K C, Raymund T D. Limitations of ionospheric imaging by tomography. Radio Sci., 1991, 26(6): 1361 - 1380
  • 10Censor Y. Finite series expansion reconstruction methods. Proc.IEEE, 1983, 71(3): 409~419

共引文献135

同被引文献150

引证文献16

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部