期刊文献+

双重流动法则下地基黏塑性随机有限元方法 被引量:1

Viscous-plastic stochastic finite element method for foundation engineering under dual flow rule
在线阅读 下载PDF
导出
摘要 针对地基工程复杂的随机非线性力学增益,基于黏塑性非线性随机有限元优势,借助Mohr-Coulomb破坏准则下的黏性拟时间步,推导在三维及平面应变条件下黏塑性非线性随机有限元的本构关系式,建立基于全量理论的黏塑性非线性随机有限元列式.在Naylor孔隙水压理论基础上,提出考虑各向同性及各向异性孔压条件的土体介质黏塑性非线性随机本构模型.以施工期三层复合地基为例,分别针对关联及非关联流动法则2种工况,研究地基在增量加载条件下的位移、应力、黏塑性应变、孔隙水压等矢量场的随机数字特征,以及地基在各个加载时期的可靠度情况.结果表明,在复杂工况下复合地基中有效应力及孔隙水压的数字特征与可靠指标分布的内在联系紧密;由非关联到关联流动法则,有效应力增加,孔压减小,同时随着孔压变异下降、可靠指标显著提高,由此形成在随机数学覆盖下完整的非线性数学模型. The three-dimensional constitutional relationship and the plane strain constitutional relationship under the viscous-plastic non-linear stochastic numerical model were induced by the help of Mohr-Coulomb failure criterion viscous quasi-time step form.Thereby,complicated characteristics of stochastic non-linear mechanics gain on foundation engineering were studied based on key merits of the viscous-plastic non-linear stochastic finite element method.Furthermore,founded here was total strain theoretic viscous-plastic non-linear stochastic finite element algorithm.Porous medium viscous-plastic non-linear stochastic constitution in joint with isotropic as well as anisotropic porous pressure was invited on the basis of Naylor super static porous pressure theory.With the application to a three strata composite foundation during construction period,the random vector fields of displacement,stress,viscous-plastic strain,porous pressure,in addition to the reliability distribution of the foundation on every loading phase were researched under two working behaviors respectively,namely,associated flow rule and unassociated flow rule.The comprehensive studies show that the reliability index has a close relation with the stochastic characteristics of the effective stress and porous pressure of the composite foundation under complex work behaviors;and that with the range from unassociated flow rule to associated one,the effective stress escalates under the decrease of expectation and variation on porous pressure while the reliability index accumulating,on which,the precise nonlinear numerical model under random mathematical coverage is formed.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第4期798-805,共8页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50379046) 教育部博士点基金资助项目(A50221)
关键词 黏性拟时间步 黏塑性非线性 随机有限元方法 层状地基 流动法则 孔隙压力特征 地基可靠度 viscous quasi-time step viscous-plastic non-linearity stochastic finite element method stratified foundation flow rule porous pressure characteristics foundation reliability
  • 相关文献

参考文献18

  • 1CHOWDHURY R N, XU D. Reliability index for slope stability assessment: two methods compared [J]. Reliability Engineering and System Safety, 1992, 37(2) :99 - 108.
  • 2MOSTYN G R, LI K S. Probabilistic slope analysis: state of play [C]// Probabilistie Methods in Geoteehnieal Engineering. Rotterdam: Balkema, 1993 : 89 - 109.
  • 3ELISHAKOFF I. Essay on uncertainties in elastic and viscoelastic structures: from A. M. Freudenthal's criticisms to modern convex modeling [J]. Computers and Structures, 1995, 56(6): 871-895.
  • 4DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of Soil Mechanics and Foundations Division, 1996, 96(SM5) : 1629 - 1653.
  • 5LADE P V. Elasto-plastic stress strain theory for cohesionless soil with curved yield surface [J]. International Journal of Solids and Structure, 1977, 13(11) : 1019 - 1035.
  • 6GRIFFITHS D V, FENTON G A. Bearing capacity of spatially random soil: the undrained clay Prandtl problem revisited [J]. Geotechnique, 2001, 51(4): 351- 359.
  • 7MOLENKAMP F. Kinematic elastoplastic model ALTERNAT [R]. Delft Soil Mechanics Laboratory Report, Delft, Netherlands. 1982.
  • 8GRIFFITHS D V. The effect of pore-fluid compressibility on failure loads in elasto-plastic soil [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(3): 253 - 259.
  • 9GRIFFITHS D V, WILLSON S M. An explicit form of the plastic matrix for a Mohr-Coulomb material [J]. Communications in Applied Numerical Methods, 1986, 2 (5) : 523 - 529.
  • 10SZYNAKIEWICZ T, GRIFFITHS D V, FENTON G A. A probabilistic investigation of c'-φ' slope stability [C]// Proceedings of the 6th International Congress on Numerical Methods in Engineering and Scientific Applications. Caracas: Sociedad Venezolana de Metodos Numericos en Ingenieria, 2002: 25- 36.

二级参考文献12

  • 1王亚军.基于模糊随机理论的广义可靠度在边坡稳定性分析中的应用[J].岩土工程技术,2004,18(5):217-223. 被引量:9
  • 2吕震宙,冯元生.考虑随机模糊性时结构广义可靠度计算方法[J].固体力学学报,1997,18(1):80-85. 被引量:13
  • 3卓家寿.弹塑性力学中的广义变分原理[M].南京:河海大学出版社,2000:29-35.
  • 4GHRISTIAN J T, BAECHER G B. Point-estimate method as numerical Quadrature [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999,125:781 - 782.
  • 5徐芝纶.弹性力学问题的有限单元法[M].南京:河海大学出版,2001:119—125.
  • 6CHOWDHURY R, XU D W. Geoteehnieal system reliability of slope [J]. Reliability Engineering and System Safety, 1995(2): 141 - 151.
  • 7HASSAN A M, WOLFF T F. Search algorithm for minimum reliability index of earth slopes [J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125:301 - 303.
  • 8LOW B K, GILBERT R B, WRIGHT S G. Slope Reliability analysis using generalized method of slices [J].Journal of Geotechnieal and Geoenvironmental Engineering, 1998,124(5):350 - 363.
  • 9SCHWEIGER H F, THURNER R, POTTLER R, Reliability analysis in geo-techniques with deterministic finite elements-theoretical concepts and practical application [J].Int Journal of Geomechunies, 2001(4):390 - 421.
  • 10陈虬,刘先斌.随机有限元及其工程应用[M].成都:西南大学出版社,1990.

共引文献17

同被引文献22

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部