期刊文献+

MIMO系统自适应均衡算法研究 被引量:6

An Adaptive Equalization Algorithm for MIMO System
在线阅读 下载PDF
导出
摘要 MIMO信道为频率选择性信道,由于时延扩展而存在色散,因此研究MIMO系统的自适应均衡技术显得尤为重要.通过对自适应均衡技术的两种主要的算法最小均方(LMS)算法和递归最小二乘(RLS)算法的研究可以看出,在不同的步长因子及遗忘因子等参数变化情况下,LMS算法的收敛速度较慢,但均衡简单易实现,RLS算法收敛速度较快,但迭代运算较复杂.结合二者的特点提出了在MIMO系统中引入改进的最小均方算法,即归一化最小均方(NLMS)算法.仿真实验对比表明NLMS算法的计算量与LMS相当,但收敛条件简单,易实现,收敛速度较快,有很实际的应用价值. MIMO channel is the frequency-selective channel,which has dispersion caused by delay spread.Therefore,it is particularly important to study adaptive equalization of MIMO system.Through the study of the two main adaptive equalization algorithms,least mean square algorithm(LMS) and recursive least squares algorithm(RLS),it is indicated that LMS algorithm is slow convergence,but simple and easy to relize while RLS algorithm is faster convergence,but more complex iterative calculations in circumstances such as different step-size factor and the forgetting factor and other changing parameters.With the characteristics of the two algorithms,improved least mean square algorithm is introduced in MIMO system,which is normalized least mean square algorithm(NLMS).Through simulation,it is indicated that NLMS algorithm and the LMS algorithm have the same computational complexity,but the former is faster convergence,whose convergence condition is simple and easy to achieve and is practically useful.
出处 《河北工业大学学报》 CAS 北大核心 2010年第2期36-40,共5页 Journal of Hebei University of Technology
基金 国家自然科学基金(60972106) 河北省教育厅科学基金(2009425 2008315)
关键词 MIMO系统 自适应均衡 最小均方算法 递归最小二乘算法 归一化最小均方算法 MIMO system adaptive equalization least mean square algorithm(LMS) recursive least squares algorithm(RLS) normalized least mean square algorithm(NLMS)
  • 相关文献

参考文献6

二级参考文献27

  • 1裴炳南.LMS算法的收敛与步长选取[J].通信学报,1994,15(4):106-111. 被引量:18
  • 2J.G.Proakis.数字通信(第3版)[M].北京:电子工业出版社,2001..
  • 3Frank M. Hsu. Square Root Kalman Filtering for High-Speed Data Received over Fading Dispersive HF channels. IEEE Trans. ON IT- 28.No.5,1982,9.
  • 4Ardavan Maleki-Tehrani, Babak Hassibi, John Cioffi M.Adaptive Equalization of MIMO Channels[J]. Systems, and Computers, 1999. Conference Record of the Thirty-Third Asilomar Conference on, Oct. 1999,Vo.1, 2427:547-551.
  • 5Shahid Qureshi U H.Adaptive Equalization[J]. Proc IEEE, Sept 1985,Vol.73, No.9:1 349-1 387.
  • 6Tugnait J K.Identification and Deconvolution of Multichannel Linear Non-Gaussian Processes Using Higher Order Statistics and Inverse Filter Criteria[J]. IEEE Trans. Signal Processing, Mar. 1996,Vol. 45:658-672.
  • 7王立宁 乐光新 等.MATLAB与通信仿真[M].北京:人民邮电出版社,1999..
  • 8ABE T, MATSUMOTO T. Space - Time Turbo Equalization in Frequency - Selective MIMO Channels[ J]. IEEE Trans. V.T. ,2003,52, ( 3 ) ,469 - 475.
  • 9ABE T, TOMISATO S, MATSUMOTO T. A MIMO Turbo Equalizer for Frequency - Selective Channels with Unknown Interference [ J ]. IEEE Trans. V.T. ,2003,52 ( 3 ) ,476 - 282.
  • 10GULATI V, LEE H. Low Complexity Iterative Per - Antenna MAP Equalizer for MIMO Frequency Selective Fading Channels[A]. GLOBECOM'02[C].2002.1118-1123.

共引文献32

同被引文献25

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部