期刊文献+

支持向量机对舰船噪声DEMON谱的分类识别 被引量:11

Classification of the DEMON spectra of ship-radiated noise based on Support Vector Machine
在线阅读 下载PDF
导出
摘要 本文采用径向基核函数的支持向量机的分类算法,实现了对舰船目标的分类识别。对两类不同类型的舰船的辐射噪声的DENOM谱建立了支持向量机模型,并进行了分类识别试验。试验结果表明,在结构风险最小的准则下,采用网格搜索法确定,径向基核函数的参数σ取值0.23、惩罚系数C值取13为最优的分类识别参数。并通过留一法验证,该模型具备良好的推广能力,总体正确识别率为91.2%。 In this paper, adoption of support vector machine with radial basis function kernel classification algorithm, succeed in realizing ship targets classification. Establish support vector machine models to two different typies of ship-radiated noises DEMON spectrum, and the classified recognition experiment has been done. The experimental result indicates that, under the standard of structural risk minimization and adopting grid-search method, the radial basis function kernel parameter o- value 0.23 and the penalty parameter C value 13 are the most superior classification parameter. Meanwhile, this model has good capability in generalizing according to the validating by "leave-one-out" method, and the total correct identification probability is 91.2%.
机构地区 海军潜艇学院
出处 《应用声学》 CSCD 北大核心 2010年第3期206-211,共6页 Journal of Applied Acoustics
关键词 舰船辐射噪声 支持向量机 径向基核函数 分类 Ship-radiated noise, Support vector machine, Radial basis function, Classification
  • 相关文献

参考文献8

二级参考文献31

  • 1燕孝飞,葛洪伟,黄向前,颜七笙.SVM在羽绒识别中的应用[J].计算机应用与软件,2005,22(9):99-101. 被引量:6
  • 2范金城,胡峰.动态测量数据的抗扰性分析研究[J].数理统计与应用概率,1996,11(3):244-248. 被引量:25
  • 3Vladimir N Vapnik. The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, Inc, 2000.
  • 4Burges J C. A Tutorial on Support Vector Machines for Pattern Recognition [M]. Boston: Kluwer Academic Publishers,. 1999.
  • 5Grace Wahba. An Introduction to Model Building with Reproducing Kernel Hilbert Spaces [R/OL]. TECHNICAL REPORT NO.1020, available at http://www.stat.wisc.edu/?wahba. 2000.
  • 6Lunts A, Brailovskiy V. Evaluation of Attributes Obtained in Statistical Decision Rules [J]. Engineering Cybernetics, 1967, 3: P98-109.
  • 7Vapnik V, Chapelle O. Choosing Multiple Parameters for Support Vector Machine [J]. Machine Learning, 2002, 46(1-3).
  • 8Jaakkola T, Haussler D. Probabilistic Kernel Regression Models [A]. Proceedings of the Seventh Workshop on AI and Statistics [C]. San Francisco, 1999.
  • 9Wahba G, Lin Yi, et al. Generalized Approximate Cross Validation for Support Vector Machines or Another Way to Look at Margin-like Quantities [A]. Advances in Large Margin Classifiers [C]. MIT Press. 2000, 297-209.
  • 10Opper M, Winther O. Gaussian Processes and SVM: Mean Field and Leave-one-out [A]. Advances in Large Margin Classifiers [C]. Cambridge, MA: MIT Press, 2000, 311-326.

共引文献2375

同被引文献69

引证文献11

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部