期刊文献+

两轮自平衡机器人惯性传感器滤波问题的研究 被引量:30

Research on Filtering Problem in Inertial Sensors for a Two-Wheeled Self-Balanced Robot
在线阅读 下载PDF
导出
摘要 针对惯性传感器在两轮机器人姿态检测中存在随机漂移误差的问题,基于卡尔曼滤波实现对倾角仪与陀螺仪的信息融合,设计了简单而实用的滤波算法,对传感器的误差进行补偿后得到机器人姿态信号的最优估计,从而将其应用于两轮自平衡机器人系统。实验结果表明,采用卡尔曼信息融合的方法,来得到机器人姿态信息最优估计是有效可行的,并且有利于机器人完成自平衡的控制。 Aiming at the random drift error from inertial sensors of a two-wheeled self-balanced robot attitude measuring,a simple and practical filtering algorithm based on Kalman filter which was implemented to information fusion for inclinometer and gyroscope was proposed,thus realizing optimal estimation for the robot gesture signal after sensors error compensation.The experimental results showed that the method based on Kalman information fusion to obtain the optimal estimation was effective and feasible.It is also beneficial to complete the robot self-balancing control.
出处 《传感技术学报》 CAS CSCD 北大核心 2010年第5期696-700,共5页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金资助项目资助(60774077) 国家"863计划"资助项目资助(2007AA04Z226)
关键词 姿态检测 信息融合 卡尔曼滤波 惯性传感器 attitude estimation information fusion Kalman filter inertial sensors
  • 相关文献

参考文献11

  • 1Rich Chi Ooi.Balancing a Two-Wheeled Autonomous Robot[D].The University of Western Australia School of Mechanical Engi-neering,Final Year Thesis 2003:44-47.
  • 2王晓宇,闫继宏,秦勇,赵杰.基于扩展卡尔曼滤波的两轮机器人姿态估计[J].哈尔滨工业大学学报,2007,39(12):1920-1924. 被引量:19
  • 3阮晓钢,狄海江,刘江.自平衡机器人姿态传感信号的滤波问题研究[C]//第七届全球智能控制与自动化大会.2008.5.
  • 4邓白立.信息融合滤波理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2007.
  • 5Young Soo Suh.Attitude Estimation Using Low Cost Accelerometer and Gyroscope[C]//The 7 th Korea Russia International Symposi-um on Science and Technology.Ulsan:the University of Ulsan,2003.423-427.
  • 6Ashokaraj I,Silson P,Tsourdosa.Application of An Extended Kalman Filter to Multiple Low Cost Navigation Sensors in Wheeled Mobile Robots[C]//Proceedings of IEEE International Confer-ence on Sensors.Orlando:2002.1660-1664.
  • 7孙华,陈俊风,吴林.多传感器信息融合技术及其在机器人中的应用[J].传感器技术,2003,22(9):1-4. 被引量:17
  • 8杨大明.空间飞行器姿态控制系统[M].哈尔滨:哈尔滨工业大学出版社,2002.
  • 9BillurBarshan,Hugh F.Durrant-Thyte Inertial Navigation Systems for Mobile Robots[J].IEEE Transactions on Robotics and Auto-marion.1995.11(3).
  • 10Kalman R E.A New Approach to Linear Filtering and Prediction Problems[J].Transaction of the ASME-Journal of Basic Engineer-ing,1960,35-45.

二级参考文献18

  • 1Fang J X,Talor H F,Choi H S. Fiber-optic fabry-perot flow sensor[ J ]. Microware and Optical Technology Letters, 1998,18 ( 3 ) : 209-211.
  • 2Graf D H, Lalonde W R. Neuroplanners for hand/eye coordination[A]. Proc Int Cord Neural Networks[C]. Washington D C:IEEE, 1989.Ⅱ-534-Ⅱ-548.
  • 3Harris C J, Moore C G. Intelligent control: Aspect of fuzzy logic and neural networks[A]. World Scientific[C]. 73 Lynton Mead,London, N20 - 8DH, 1993:76 - 87.
  • 4Bauzil G, Briot M, Ribes P. A navigation subsystem using ultrasonic sensors for the mobile robot Hilare[A]. 1st Int Conf on Robot Vision and Sensory Control[C]. Stanford-upon-Avon, UK,1981:47 - 58.
  • 5Alonzo Kelly. Adaptive prediction for aut: vehides[R].Technical Report, CMU-RI-TR-94-18, CS of CMLI, 1994:1 -30.
  • 6Moshe Kam, XiaoXun Zhu, Paul Kalata. Sensor f:on for mobile robot navigation[ J ]. Proc of the IEEE, 1997,85 ( 1 ) : 108 - 119.
  • 7Thomas Hellstrōm. Autonomous navigation for forest machines[R]. Technical Report, UMINF 02 - 13 ISSN - 0348 - 0542 Umea University,2002.1 - 60.
  • 8Hagras H, Callaghan V, CoUey M. Outdoor mobile robot learning and adaptation [ J ]. IEEE Robotics & Automation Magazine,2001,8(3):53-69.
  • 9Reynolds R G. Robust estimation of covarian: matrices [ J ].IEEE Trans Automat Control, 1990,35 (9) : 1047 - 1051.
  • 10Pacini P J, Kosko B. Adaptive fuzzy systems for target tracking[ J ]. Intelligent Systems Engineering, 1992,1( 1 ) : 3 - 21.

共引文献41

同被引文献200

引证文献30

二级引证文献264

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部