期刊文献+

柴达木盆地东缘地区青海云杉生长的气候响应机制初步探讨 被引量:6

Primary Discussion of the Climate Mechanism Response of Picea Crassifolia on East Edge of Qaidem Basin
在线阅读 下载PDF
导出
摘要 选择生长在柴达木盆地东缘地区哈里哈图青海云杉生长上限的样本作为研究对象,通过TREE-RING生态机理模型,从树木的生理角度模拟了树木的生长。结果表明:(1)模型中调试的参数基本符合哈里哈图地区青海云杉的生长状况,模型达到了较好的拟合效果。细胞个数模拟序列和实测序列之间的相关系数达到0.51,通过了0.001显著性水平检验;轮宽指数中两者的相关系数达到0.46,通过了0.01显著性水平检验。(2)哈里哈图青海云杉生长平均开始于第129天,即5月9日;停止于第298天,即10月28日,生长期共169天,基本符合当地树木生长的实际起始时间。(3)通过宽、窄轮的形成分析发现,限制该地区树木生长的主要气候因子为树木生长前期的土壤湿度。本研究的开展为高原地区气候因子的重建提供了生理背景支持。 Using the upper line of Picea Crassifolia in Halihatu region,on the east edge of Qaidam Basin and TREE-RING Eco-Physiological model,the growth of the Picea Crassifolia is simulated and the physiological response mechanism is analyzed in this study.The obtained conclusions are as follows:(1) the simulated results are well and the correlation of cell number between the measured and the modeled is 0.51,which pass the significance level at 0.001;the correlation between the wide and narrow ring width is 0.46,and pass the significance level at 0.01.(2) The growth of Picea Crassifolia in Halihatu starts averagely in 129th day,that is on May 9;stops in 298th day,also on October 28.The vegetal periodie is altogether 169 days;(3) Through the analysis of wide and narrow rings formation,it is found that the main climate factor limiting tree growth in this area is the soil moisture condition in the early period of the growing season.
出处 《高原气象》 CSCD 北大核心 2010年第2期349-358,共10页 Plateau Meteorology
基金 国家自然科学基金项目(30300053) 中国科学院地理科学与资源研究所项目(CXIOG-A05-12)共同资助
关键词 柴达木盆地 青海云杉 TREE-RING生态机理模型 细胞特征值 Qaidam basin Picea Crassifolia TREE-RING Eco-Physiological model Cell characteristic values
  • 相关文献

参考文献47

  • 1Fritts H C. Tree rings and climate[M]. New York: Academic Press, xii, 1976:567.
  • 2Fritts H C, A V Shashkin, G M Downes. A simulation model of conifer ring growth and cell structure, in tree ring analysis [M]//Wimmer R, R E Vetter ed, 3-32, Cambridge University Press, Cambridge. Gates DM. Biophysical Ecology. New York: Springer, 1999:1-611.
  • 3Fritts H C, E A Vaganov, I V Sviderskayaya, et al. Climatic variation and tree-ring structure in conifers: Empirical and mechanistic models of tree-ring width, number of cells, cell size, cell wall thickness and wood density[J]. Climate Res, 1991, 1:97- 116.
  • 4Vaganov E A, M K Hughes, A V Shashkin. Growth dynamics of conifer tree rings: Images of past and future environments[M]. Berlin, [London]: Springer, 2006: xiv, 354.
  • 5Vaganov E A. The tracheidogram method in tree-ring analysis and its application[M]. Methods of dendrochronology. London: Kluwer Academic Publishers. 1990: 63- 76.
  • 6Jacoby G C, D'Arrigo, D Rosanne. Tree ring width and density evidence of climatic and potential forest change in Alaska [J]. Global Biogeochemical Cycles, 1995, 9(2): 227-234.
  • 7Briffa K R, F H Schweingruber, P D Jones, et al. Reduced sensitivity of recent tree growth to temperature at high northern latitudes[J]. Nature, 1998, 391(6668): 678-685.
  • 8Barber V A, G P Juday, B P Finney. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress[J]. Nature, 2000, 405 (6787): 668- 673.
  • 9Biondi F. Are climate tree growth relationships changing in North-Central Idaho USA [J]. Arctic Antarctic and Alpine Res, 2000, 32(2): 111-116.
  • 10Lloyd A H, C L Fastie. Spatial and temporal variability in the growth and climate response of treeline trees in Alaska[J]. Climatic Change, 2002, 52(4): 481-509.

二级参考文献177

共引文献431

同被引文献136

引证文献6

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部