期刊文献+

信念调节着市场的演化

Belief Adjusts Market Evolution
在线阅读 下载PDF
导出
摘要 本文提出了一个带有双重反馈作用的异质herding模型,该模型假设金融市场是由不同大小和意愿的经纪人集团组成,两个不同集团发生交易或合并的成功率依赖上一次交易的市场波动程度,交易后亏损方发生翻转和分化的概率跟亏损程度有关。我们认为翻转和分化的概率也跟经纪人集团对市场的信念有关。为此,我们给经纪人集团一个参数k去表示他们对市场的信念程度。数值计算表明在我们的模型中动力学行为明显随k变化而变化,即信念能调节市场的演化。 We propose a heterogeneous dynamic herding model with dual feedback interactions, which suggests that the financial markets consist of agent clusters with different sizes and tendencies, in which the ratio of successful exchange or merger depends on the fluctuating degree of the last action and the probability of the dissolution and reversal depends on the lost degree after an exchange. We consider that the probability of the dissolution and reversal also depend on the belief of the agent cluster to the market. Thus, we give each agent cluster a parameter k to denote the behef - degree. The numerical calculation shows that the dynamic behaviors are different obviously when k varies, namely, the belief can adjust the market evolution in our model.
作者 董林荣
出处 《中国软科学》 CSSCI 北大核心 2010年第4期164-168,共5页 China Soft Science
基金 温州市科技计划项目(R20080059):"温州民营企业结构 布局及其演化的动力学研究"
关键词 双重反馈 信念度 herding模型 分化 翻转 dual feedback belief - degree herding model dissolution reversal
  • 相关文献

参考文献9

  • 1Cont R. Empirical properties of asset returns : stylized facts and statistical issues [ J ]. Quantitative finance, 2001, 1 : 223 - 236.
  • 2Eguiluz V M. Transmission of information and herd behavior: an application to financial markets [ J ]. Phys. Rev. Lett. , 2000,85 : 5659 - 5662.
  • 3Zheng B. A generalized dynamic herding model with feed - back interactions [ J]. Physica A ,2004 ,343 :653 - 661.
  • 4Lux T. Scaling and criticality in a stochastic multiagent model of a financial market [ J ]. Nature, 1999,397:498 - 499.
  • 5董林荣.相互作用herding模型:记忆与遗忘[J].物理学报,2006,55(8):4046-4050. 被引量:6
  • 6董林荣.相互作用herding模型的非线性行为和动力学特性[J].浙江大学学报(理学版),2006,33(5):521-524. 被引量:2
  • 7Challet D. Stylized facts of financial markets and market crashes in Minority Games [ J]. Physica A,2001,294:514 - 524.
  • 8Zheng D. A model for the size distribution of customer groups and businesses [ J ]. Physica A,2002,287:480 - 486.
  • 9Gopikrishnan G. A theory of power - law distributions in financial market fluctuations [ J ]. Nature ,2003,423:267 - 270.

二级参考文献10

  • 1MANTEGNA R N,STANLEY H E.Scaling behavior in the dynamics of an economic index[J].Nature,1995,376:46-49.
  • 2PLEROU P,GOPIKRISHNAN P,STANLEY H E.Two-phase behavior of financial markets[J].Nature,2003,421:130.
  • 3EGUILUZ V M,ZIMMERMANN M G.Transmission of information and herd behavior:an application to financial markets[J].Phys Rev Lett,2000,85:5659-5662.
  • 4ZHENG B,REN F,TRIMPER S,et al.A generalized dynamic herding model with feed-back interaction[J] Physica A,2004,343:653-661.
  • 5CONTR.Empirical properties of assert returns:stylized facts and statistical issues[J].Quanitative Finance,2001,1:223-236.
  • 6ZHENG B,QIU T,REN F.Two-phase phenomena,minority games,and herding models[J].Phys Rev E,2004,69:046115-1-046115-6.
  • 7MANTEGNA R N,STANLEY H E.Turbulence and financial markets[J].Nature,1996,383:587-588.
  • 8CHALLET D,MARSILI M,ZHANG Y C.Stylized facts of financial markets and market crashes in Minority Games[J].Phsica A,2001,294:514-524.
  • 9全宏俊,汪秉宏,杨伟松,王卫宁,罗晓曙.经纪人模仿在演化少数者博弈模型中引入的自组织分离效应[J].物理学报,2002,51(12):2667-2670. 被引量:4
  • 10谢彦波,汪秉宏,全宏俊,杨伟松,王卫宁.EZ模型中的有限尺寸效应[J].物理学报,2003,52(10):2399-2403. 被引量:3

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部