期刊文献+

改进灾变遗传算法及其在无功优化中的应用 被引量:12

Improved Catastrophic Genetic Algorithm and Its Application to Reactive Power Optimization
在线阅读 下载PDF
导出
摘要 针对灾变遗传算法的早熟和稳定性问题,提出了一种改进灾变遗传算法,设计了与进化代数相关的改进灾变算子;为了兼顾算法的全局性能和收敛速度,设计了与进化代数相关的交叉概率和与个体适应度相关的变异概率.IEEE14节点和IEEE30节点无功优化算例表明,该改进算法具有良好的全局性能和收敛速度,适合求解电力系统的无功优化问题. In order to resolve the issues of prematurity and instability of catastrophic genetic algorithm (CGA), an improved CGA (ICGA) is proposed, and an improved catastrophic operator related to the generation number is de- signed. Moreover, considering both the global performance and the convergence speed, two probability algorithms respectively for the crossover related to the generation number and for the mutation related to the fitness are de- signed. The proposed ICGA is finally applied to the reactive power optimization of the IEEE 14-bus and the IEEE 30-bus systems. The results show that ICGA is applicable to the reactive power optimization of power system due to its good global performance and high convergence speed.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第3期95-100,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(B05-B5070310)
关键词 遗传算法 灾变 无功优化 genetic algorithm catastrophe reactive power optimization
  • 相关文献

参考文献12

二级参考文献56

共引文献184

同被引文献114

引证文献12

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部