期刊文献+

基于遗传算法的二叉树支持向量机分类方法 被引量:4

Genetic Algorithm Based on Binary Tree Support Vector Machine Classification
在线阅读 下载PDF
导出
摘要 针对传统的基于支持向量机的文本分类存在的问题进行了研究,采用二叉树结构与多个支持向量机子分类器组合进行Web文本信息分类,在二叉树支持向量机多类方法的基础上,进一步结合遗传算法,提出了一种新的支持向量机的多类分类方法,实验结果表明,采用该方法进行多类分类,分类精度明显提高,体现了将遗传算法与二叉树支持向量机结合的优越性。 We discuss the traditional support vector machine-based text classification problems,the method constructing and combining several binary support vector machines with a binary tree can solve web text classification problems,applying binary tree into support vector machine,further combination of genetic algorithm,proposes a new support vector machine multi-class classification methods, Experiment results show that the method of multi-class classification,classification accuracy improved,manifests the algorithm's advantage of genetic algorithm integrated with binary tree support vector machine.
出处 《长春理工大学学报(自然科学版)》 2010年第1期152-155,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 黑龙江省研究生创新科研资金项目(YJSCX2006-38HLJ)
关键词 遗传算法 多分类 支持向量机 二叉树 genetic algorithm multi-class classification support vector machine binary tree
  • 相关文献

参考文献8

二级参考文献27

  • 1吴佑寿,赵明生,丁晓青.一种激励函数可调的新人工神经网络及应用[J].中国科学(E辑),1997,27(1):55-60. 被引量:26
  • 2VAPNIK V. The Nature of Statistical Learning [M]. New York:Spring Verlag,1995.
  • 3HSU C-W,LIN C-J. A comparison of methods for multi-class support vector machines[J]. IEEE Transaction on Neural Network, 2002,13(2):415-425.
  • 4PLATT JC,CRISTIANINI N,SHAWE-YAYLOR J. Large Margin DAGs for multiclass classification [A]. Advances in Neural Information Processing Systems [C], 2000. 547-553.
  • 5BEILEY A. Class-dependent features and multicategory classification [D]. navy.mil/csf/papers/baileyphd.pdf,2001.
  • 6HAYKINS 叶世伟 史忠植 译.Neural Networks: A Comprehensive Foundation[M]. 2nd Edition[M].北京:机械工业出版,2004.321-347.
  • 7PLATT JC. Fast Training of Support Vector Machines using Sequential Minimal Optimization[A]. Advances in Kernel Methods: Support Vector Learning[C]. Cambridge:MIT Press,1999. 185-208.
  • 8VAPNIK V.The nature of statistical learning theory[M].New York:Springer,1995.
  • 9KREBEL U.Pairwise classification and support vector machines[M].MA:MIT Press,1999.255-268.
  • 10DIETTERICH TG,BAKIRI G.Solving multi-class learning problem via error-correcting output codes[J].Journal of Artificial Intelligent Research,1995,(2):263-286.

共引文献87

同被引文献33

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部