期刊文献+

交叉口右转机动车穿越决策BP仿真模型及灵敏度分析 被引量:9

BP Simulation Model and Sensitivity Analysis of Right-turn Vehicles' Crossing Decisions at Signalized Intersection
在线阅读 下载PDF
导出
摘要 机非相互穿越模型是信号交叉口混合交通微观仿真系统中反映机动车和自行车相互影响的核心模型.为了描述交叉口处机动车穿越自行车流的决策行为,分析了两相位信号交叉口右转机动车穿越邻道直行自行车的微观行为,提出了基于BP神经网络的机动车穿越决策模型.以北京2个交叉口调查数据为基础,对该模型验证并与Logistic模型比较,结果表明BP模型优于Logistic模型且具有较好的预测精度.根据所建模型的映射关系计算出系统输出对输入参数的一阶灵敏度矩阵,灵敏度分析结果表明,自行车提供给机动车的穿越间隙是影响机动车穿越决策行为的决定性因素,且间隙在2.76s^2.96s变动时对机动车穿越决策行为影响最大. Inter-crossing behavior model of motor vehicles and bicycles is the key part of micro-simulation for mixed traffic at signalized intersection. The microscopic behaviors of the motor vehicles passing through the bicycle flow at a two phased signalized intersection were analyzed to reproduce the passing behavior of motor vehicles. A BP neural net- work model was proposed to describe the motor vehicles' passing decision. Based on the field data at two typical intersections in Beijing, the model was validated and compared with the Logistic model. The results indicated that the BP model was more effective than the Logistic model and had high prediction accuracy. First derivative sensitivity matrix of the BP model was established. The sensitivity analysis showed that the most important factor impacting on the motor vehicles' passing decision-making behavior is the gap allowing motor vehicles to pass through. The passing decision-making behavior is the most sensitive to the gap when it lies between 2.76 s and 2.96 s.
出处 《交通运输系统工程与信息》 EI CSCD 2010年第2期49-56,共8页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金项目(70672023)
关键词 交通工程 机非干扰 穿越决策模型 BP神经网络 间隙接受 延时接受 灵敏度分析 traffic engineering interference between motor vehicles and bicycles passing deeision-making model BP neural network gap acceptance lag acceptance sensitivity analysis
  • 相关文献

参考文献8

二级参考文献31

  • 1景春光,王殿海.典型交叉口混合交通冲突分析与处理方法[J].土木工程学报,2004,37(6):97-100. 被引量:53
  • 2郑林,韩崇昭,左东广,王永昌.基于多特征融合的运动目标识别[J].系统仿真学报,2004,16(5):1081-1084. 被引量:10
  • 3Saltelli A, et al. Sensitivity Analysis[M]. Chichester: Wiley, 2000.
  • 4Haftka R T, Adelman H M. Recent developments in structural sensitivity analysis [J]. Structural Optimization, 1989,1 (2): 137-152.
  • 5Tong M, et al. Numerical modelling for temperature distribution in steel bridges [J]. Computers &Structures, 2001,79(6): 583-593.
  • 6Brownjohn J M W, Xia P Q. Dynamic assessmentof curved cable-stayed bridge by model updating[J].Journal of Structural Engineering, ASCE , 2000,126(2):252-260.
  • 7Hornik K, et al. Multilayer feedforward networks are universal approximators [J]. Neural Networks,1989,2(5) :359-366.
  • 8Reddy P, et al. Simulation of construction of cablestayed bridges [J]. Journal of Bridge Engineering ,ASCE, 1999,4(4): 249-257.
  • 9Abraham D M, Halpin D W. Simulation of the construction of cable-stayed bridges [J]. Canadian Journal of Civil Engineering, 1998,25(3) :490-499.
  • 10Tang M C. Analysis of cable-stayed girder bridges[J ]. Journal of Structural Division, ASCE, 1971,97(5):1481-1496.

共引文献85

同被引文献48

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部