期刊文献+

含有过程噪声的Hammerstein-Wiener模型辨识算法及其收敛性分析 被引量:2

Identification Algorithm of Hammerstein-Wiener Model with Process Noise and Its Convergence Analysis
在线阅读 下载PDF
导出
摘要 针对含有过程噪声的Hammerstein-Wiener模型,提出一种偏差补偿递推最小二乘辨识方法.通过将偏差补偿引入到递推最小二乘算法中,在线辨识包含原系统参数乘积项的参数向量.并用鞅收敛定理证明偏差补偿递推最小二乘辨识算法的收敛性,分析表明在持续激励的条件下参数估计偏差一致收敛于零.仿真结果表明该方法优于递推最小二乘辨识方法. A bias-compensated recursive least squares(BCRLS) algorithm was proposed to identify the Hammerstein-Wiener model with process noise,i.e.,the bias compensation was introduced into the recursive least squares algorithm.The parameter vector containing the product of the original system parameters was thus identified on-line.Then,the convergence of the algorithm was proved by the martingale convergence theorem.It was found that the estimation error of parameter product uniformly converges to zero during persistent excitation.Simulation results showed that the proposed method is better than the identification method by recursive least squares.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期469-472,476,共5页 Journal of Northeastern University(Natural Science)
基金 国家高技术研究发展计划项目(2007AA04Z194 2007AA041401)
关键词 HAMMERSTEIN-WIENER模型 偏差补偿递推最小二乘法 鞅收敛定理 收敛性 参数辨识 Hammerstein-Wiener model BCRLS algorithm martingale convergence theorem convergence parameter identification
  • 相关文献

参考文献9

  • 1Crama P, Schoukens J. Hammerstein-Wiener system estimator initialization [ J ]. Automatica, 2004,40 (9) : 1543 - 1550.
  • 2Zhu Y. Estimation of an N-L-N Hammerstein-Wiener model [J]. Automatica, 2002,38(9) : 1607 - 1614.
  • 3Bai E W. An optimal two-stage identification algorithm for Hammerstein Wiener nonlinear systems [ J ]. Autornatica, 1998,34(3):333-338.
  • 4Zheng W X. Fast identification of autoregressive signals from noisy observations[J]. IEEE Transactions on Circuits and Systems, 2005,52 ( 1 ) : 43 - 48.
  • 5Ding F, Chen T, Qiu L. Bias compensation based recursive least-squares identification algorithm for MISO systems [J J. IEEE Transactions on Grcuits and Systems, 2006, 53 ( 5 ) : 349- 353.
  • 6张勇,杨慧中.有色噪声干扰输出误差系统的偏差补偿递推最小二乘辨识方法[J].自动化学报,2007,33(10):1053-1060. 被引量:19
  • 7Liu Y, Bai E W. Iterative identification of Hamrnerstein systems[J]. Automatica, 2007,43(2) :346- 354.
  • 8Ding F, Chen T. Identification of Hammerstein nonlinear ARMAX systems [ J ]. Autornatica, 2005,41 ( 9 ) : 1479 - 1489.
  • 9范伟,丁锋.Hammerstein非线性系统参数估计分离的三种方法[J].科学技术与工程,2008,8(6):1586-1589. 被引量:10

二级参考文献17

  • 1张勇,杨慧中,丁锋.有色噪声干扰下的一种系统辨识方法[J].南京航空航天大学学报,2006,38(B07):167-171. 被引量:25
  • 2杨慧中,张勇.Box-Jenkins模型偏差补偿方法与其他辨识方法的比较[J].控制理论与应用,2007,24(2):215-222. 被引量:13
  • 3[1]Narendra K S.Gallman P G.An iterative method for the identification of nonlinear systems using a Hammerstein model.Ieee Transactions on Automatic Control,1960;11(3):546-550.
  • 4[2]Stoica P.On the convergence of an iterative algorithm used for Hammerstein system identification.IEEE Transactions on Automatic Control,1981;26(4):967-967.
  • 5[3]V(o)r(o)s J.Parameter identification of Discontinuous Hammerstein systems.IEEE Transactions on Auto marie Control,1997;33(6):1141-1146.
  • 6[4]Liu Y.Bai E W.Iterative identification of Hammerstein systems.Automatica,2007;43(2):345-354.
  • 7[5]Ding F,Chen T.Identification of Hammerstein nonlinear ARMAX systems.Automatica,2005;41(9):1479-1489.
  • 8[6]Bai E W.An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems.Automatics,1998;34(3):333-338.
  • 9Ljung L.System Identification:Theory for the User.Englewood Cliffs:Prentice-Hall,1999
  • 10Zheng W X.On a least squares based algorithm for identification of stochastic linear systems.IEEE Transactions on Signal Processing,1998,46(6):1631-1638

共引文献26

同被引文献25

  • 1王勇勤,张云飞,严兴春,田文波.伺服阀非线性特性建模的液压弯辊系统动态特性[J].重庆大学学报(自然科学版),2005,28(11):5-7. 被引量:18
  • 2向微,陈宗海.基于Hammerstein模型描述的非线性系统辨识新方法[J].控制理论与应用,2007,24(1):143-147. 被引量:25
  • 3Wang Y Q, Zhang W, Gao Y J. Research on digital simulation of virtual rolling mills for continuous cold strip rolling progress[ C]//The Forth International Symposium on Fluid Power Transmission and Control. Wuhan: Huazhong University of Science and Technology, 2003 : 1 - 9.
  • 4Alleyne A, Liu R. A simplified approach to force control for electro-hydraulic systems[J]. Control Engineering Practice, 2000,8(12) : 1347 - 1356.
  • 5Bhowal P. Modeling and simulation of hydraulic gap control system in a hot strip mill[J ]. ISIJ International, 1996,36 (5) :553 - 562.
  • 6Krus P, Palmberg J O. Simulation of fluid power systems in time and frequency domains[C]//The 7th International Fluid Power Symposium. Cranfield, 1986 : 73 - 79.
  • 7LjunN L. Black box model from input output measurement [C ]//IEEE Instrumentation and Measurement Technology Conference. Budapest, 2001:21 - 23.
  • 8Wang J D. Asymptotic of least-square estimations for constrained nonlinear regression [ J ]. The Annals of Statistics, 1996,24(3) : 1316 - 1326.
  • 9Zhu Q M, Billings S A. Parameter estimation for stochastic nonlinear rational models [ J ]. International Journal of Control, 1993,57(2) :309 - 333.
  • 10LIU Y, BAI E W. Iterative identification of Ham- merstein systems[J]. Automatiea, 2007, 43(2): 346- 354.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部