期刊文献+

基于小波分解的变尺度多分辨率纹理分割 被引量:1

Multi-resolution Texture Image Segmentation on Variable Scale Based on Wavelet Decomposition
在线阅读 下载PDF
导出
摘要 针对常见的多分辨率分割算法在每一尺度分割过程中信息利用不充分的问题,提出了一种基于小波分解的变尺度多分辨率纹理图像分割新算法。该算法在每一尺度的分割过程中充分利用了各尺度上的有关信息:通过变尺度特征场考虑了更高分辨率尺度上的特征数据;通过变尺度标记场考虑了更低分辨率尺度上的标记数据。从最低分辨率尺度到原始分辨率尺度逐次进行图像分割,低分辨率尺度的分割结果通过直接投影作为相邻的更高分辨率尺度的初始分割,最高分辨率尺度上的分割结果作为本文方法的分割结果。实验表明,该算法具有较好的分类性能。 To overcome the insufficient information exploitation of the classical multi-resolution segmentation method, a new algorithm is proposed on variable scale based on the wavelet decomposition. In the algorithm, the segmentation on each scale can make full use of information on all scales; the feature data on the finer scales is considered by the scalable feature field; and the label data on the coarser scales is integrated by the scalable label field. The image segmentation procedure is sequentially executed from the coarsest resolution scale to the finest resolution scale, and segmentation result of the coarser scale is directly projected on the nearest finer resolution scale as its initial segmentation. The segmentation result on the finest resolution is used as the final result of the algorithm. Experimental results show its better performance on the image segmentation.
出处 《数据采集与处理》 CSCD 北大核心 2010年第2期165-170,共6页 Journal of Data Acquisition and Processing
基金 国家"九七三"重点基础研究发展计划(2006CB701303)资助项目 国家自然科学基金(40601055)资助项目 国家"八六三"高技术研究发展计划(2006AA12Z132)资助项目 优秀国家重点实验室项目(40523005)
关键词 多分辨率图像分割 小波分解 变尺度 multi-resolution image segmentation wavelet decomposition variable scale
  • 相关文献

参考文献10

  • 1Liang K,Tjahjadi T.Adaptive scale fixing for multiscale texture segmentation[J].IEEE Transactions on Image Processing,2006,15(1):249-256.
  • 2Krishnamachari S,Chellappa R.Multiresolution Gauss-Markov random field models for texture segmentation[J].IEEE Transactions on Image Processing,1997,6(2):251-267.
  • 3Liu Guoying,Wang Leiguang,Xie Wei,et al.New texture segmentation approach based on multiresolution MRFs with variable weighting parameters in wavelet domain[C]//Proceedings of SPIE.Wuhan,China:SPIE,2007:1-8.
  • 4Noda H,Shirazi M N,Kawaguchi E.MRF-based texture segmentation using wavelet decomposed images[J].Pattern Recognition,2002,35:771-778.
  • 5Choi H,Baraniuk R G.Multiscale image segmentation using wavelet-domain hidden Markov models[J].IEEE Transactions on Image Processing,2001,10(9):1309-1321.
  • 6李旭超,朱善安,朱胜利.基于小波域层次Markov模型的图像分割[J].中国图象图形学报,2007,12(2):308-314. 被引量:12
  • 7Bouman C A,Shapiro M.A multiscale random field model for Bayesian image segmentation[J].IEEE Transactions on Image Processing,1994,3(2):162-178.
  • 8Celeux G,Forbes F,Peyrard N.EM procedures using mean field-like approximations for Markov model-based image segmentation[J].Pattern Recognition,2003,36:131-144.
  • 9Rellier G,Escombes X D,Falzon F,et al.Texture feature analysis using a Gauss-Markov model in hyperspectral image classification[J].IEEE Transactions on Geosciences and Remote Sensing,2004,42(7):1543-1552.
  • 10Panjwani D K,Healey G.Markov random field models for unsupervised segmentation of textured color images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(10):939-954.

二级参考文献14

  • 1Geman S,Geman D.Stochastic relaxation,gibbs distributions,and the bayesian restoration of images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6 (6):721 - 741.
  • 2Max Mignotee,Christophe Collet,Patrick P,et al.Sonar image segmentation using an unsupervised hierarchical MRF model[J].IEEE Transactions on Image Processing,2000,9 (7):1216 - 1231.
  • 3Bouman CA,Shaapiro M.A multiscal random field model for Bayesian image segmentation[J].IEEE Transactions on Image Processing,1994,3(2):162 - 177.
  • 4Matthew S Crouse,Robert D Nowak,Richard G Baraniuk.Waveletbased statistical signal processing using hidden markov models[J].IEEE Transactions on Signal Processing,1998,46(4):886 -902.
  • 5Justin K Romberg,Hyeokho Choi,Richard G Baraniuk.Bayesian tree-structured image modeling using wavelet-domain hidden markov models[J].IEEE Transactions on Image Processing,2001,10(7):1056 - 1068.
  • 6Hyeokho Choi,Richard G Baraniuk.Multiscale image segmentation using wavelet-domain hidden Markov models[J].IEEE Transactions on Image Processing,2001,10(9):1309 - 1321.
  • 7Jien Kato,Joga S,Rittscher J,et al.An HMM-Based segmentation method for traffic monitoring movies[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24 (9):1291 -1296.
  • 8Chang S Grace,Yu B,Martin Vetterli.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,9(9):1532 - 1546.
  • 9Ulaby F T,Kouyate F.Texture information in SAR images[J].IEEE Transactions on Geoscience Remote Sensing,1986,24 (2):235 -245.
  • 10Hu Yong-jian,Sam Kwong,Chan Y K.The design and application of DWT-domain optimum decoders[A].In:Proceedings of the 24th International Conference on Distributed Computing Systems Workshops[C],Piscataway,USA,2002:22 - 30.

共引文献11

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部