期刊文献+

基于空气环结构的大带隙二维光子晶体的设计 被引量:2

Design of a two-dimensional photonic crystal with large photonic bandgap based on ring-shaped air holes
原文传递
导出
摘要 用平面波展开法研究了内介质柱截面为长方形的三角晶格空气环型光子晶体的完全带隙特性。通过调节内介质柱的大小、介电常数、旋转角度以及空气环外半径对完全带隙的影响,找到了一组可以获得大带隙二维光子晶体结构的最佳参数。经优化后得到禁带宽度Δω=0.082(2πca-1)(其中a为晶格常数,c为光速),中心频率ω0=0.401(2πca-1),完全带隙宽度与中心频率的比值达到了20.4%,该结果比圆形内介质柱截面空气环结构的完全带隙大,比普通的空气孔结构的完全带隙增大了37%。 Plane wave expansion method is employed to study the characteristic of the photonic band gap (PBG) structure of two-dimensional photonic crystal consisting of a triangular lattice with ring-shaped air holes which inner-dielectric cylinders are rectangular.The optimal samples that possess the largest gap-mid gap ratio are obtained by scanning the four parameters (size,dielectric constant,rotating angle of inner-dielectric cylinders and outside radius of air ring).It is showed that when the dielectric constant of inner-dielectric cylinders is the same as the dielectric constant of background ε1=ε2=16,the side-lengths of rectangular inner-dielectric cylinders have values of l1=0.37a,l2=0.19a respectively,inner-dielectric cylinders are rotated by 5° and the values of outside radius of air ring is 0.46a,a much larger complete band gap ω=0.082(2πca-1) (where α is lattice constant,c is light speed) is found at a mid-gap frequency ω0=0.401(2πca-1),with ω/ω0=20.4%.Comparing with the standard annular photonic crystal,the photonic band gaps of new structure,of which inner-dielectric cylinders are rectangular shapes,are wider.Comparison of the calculated results and original lattice (circular air hole triangular array in dielectric background) reveals that the photonic band gap is considerably enhanced in size for annular structure in triangular lattice.
出处 《光学技术》 CAS CSCD 北大核心 2010年第2期285-289,共5页 Optical Technique
基金 福建省自然科学基金(A0510014)资助项目 福建省科技厅资助项目(2006F5025)
关键词 环形光子晶体 光子带隙 平面波展开法 photonic crystal with ring-shaped air holes photonic band gap plane wave expansion method
  • 相关文献

参考文献14

  • 1Yablonovitch E. Inhibited Spontaneous Emission in Solid State Physics and Electronics[J]. Phy Rev Lett, 1987, 58 (20): 2059-2062.
  • 2Chen L X, Dalwoo Kim. A bistable switching of two dimensional photonic crystal with Kerr point defect [J].Opt Commun, 2003,218:19--26.
  • 3冯尚申,沈林放,何赛灵.大带隙二维正方介质柱三角晶格光子晶体[J].物理学报,2004,53(5):1540-1545. 被引量:23
  • 4庄飞,何赛灵,何江平,冯尚申.大带隙的二维各向异性椭圆介质柱光子晶体[J].物理学报,2002,51(2):355-361. 被引量:24
  • 5Anderson C M, Giaps K P. Larger two-dimensional photonic bandgaps[J]. Phy Rev Lett, 1996 ,77 (14):2949 -2952.
  • 6Li Z Y , Gu B Y, Yang G Z. Large absolute band gap in 2D anisotropie photonie crystals [J]. Phy Rev Lett.1998, 81 (12) : 2574-2577.
  • 7Qiu M, He S L. Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two--dimensional bandgap[J]. JOSAB2000,17(6):1027 -1030.
  • 8Kee C S, Kim J E, Park H Y. Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air[J]. Phy Rev Lett,1997, 56(6): R6291-6293.
  • 9Agio M, Andreani L C. Complete photonic band gap in a two dimensional chessboard lattice[J]. Phys Rev B, 2000,61 (23) 15519-15522.
  • 10Shen L F, et al. Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels[J]. Phys Rev B,2002,66(16) : 165315-165320.

二级参考文献62

  • 1车明,周云松,王福合,顾本源.二维正方格子磁性光子晶体的带隙结构[J].物理学报,2005,54(10):4770-4775. 被引量:11
  • 2汪静丽,陈鹤鸣.二维棋盘格子复式晶格的完全光子带隙研究[J].物理学报,2007,56(2):922-926. 被引量:15
  • 3[1]Joannopouls J D, Villeneuve P R and Fan S 1997 Nature 386 143
  • 4[2]Anderson C M and Giapis K P 1996 Phys. Rev. Lett. 77 2949
  • 5[3]Kee C S, Kim J E and Park H Y 1997 Phys. Rev. E 56 R6291
  • 6[4]Qiu M and He S L 1999 Phys. Rev. B 60 10610
  • 7[5]Villeneuve P R and Piche M 1992 Phys. Rev. B 46 4969
  • 8[6]Cassagne D, Jouanin C and Bertho D 1995 Phys. Rev. B 52 R2217
  • 9[7]Wang R Z, Wang X H, Gu B Y and Yang G Z 2001 J. Appl. Phys. 90 4307
  • 10[8]Wang X H, Gu B Y, Li Z Y and Yang G Z 1999 Phys. Rev. B 60 11417

共引文献75

同被引文献32

  • 1汪静丽,陈鹤鸣.二维棋盘格子复式晶格的完全光子带隙研究[J].物理学报,2007,56(2):922-926. 被引量:15
  • 2Yuji S, Toshihihiko B. Stopping of light by dynamic tuning of photonic crystal slow light device[J]. Optics Express, 2010, 18(16): 17141- 17153.
  • 3Ma P C, Xiao Y, Yu Y F, et al: Microwave field controlled slow and fast light with a coupled system consisting of a nanomechanical resonator and a Cooper-pair box[J]. Optics Express, 2014, 22(3): 3621-3628.
  • 4Juntao L, Thomas P W, Faoloin L O, et al: Systematic design of fiat band slow light in photonic crystal waveguides[J]. Optics Express, 2008, 16(9~: 6227-6232.
  • 5Hamel P, Grinberg P, Sauvan C, et al: Coupling light into a slow-light photonic-crystal waveguide from a free-space normally-incident beam[J]. Optics Express, 2013, 21(13): 15144-15154.
  • 6Zhao Y, Zhang Y N, Wang Q. Optimization of slow light in slotted photonic crystal waveguide with liquid[J]. Journal of Lightwave Technology, 2013, 31 (14): 2448-2454.
  • 7Xu Y M, Caer C, Gao D S, et al: High efficiency asymmetric directional coupler for slow light slot photonic crystal waveguides[J]. Optics Express, 2014, 22(9): 11021-11029.
  • 8Saynatjoki A, Mulot M, Ahopelto J, et al: Dispersion engineering of photonic crystal waveguides with ring-shaped[J]. Optical Express, 2007, 15(13): 8323-8328.
  • 9Zhao Y, Zhang Y N, Hu H F, et al: Dispersion engineering of slow light in ellipse-shaped-hole slotted photonic crystal waveguide[J]. Lightwave Technol, 2014, 32(11): 2144-2151.
  • 10Zhao Y, Zhang Y N, Wang Q, et al: Review on the optimization methods of slow light in photonic crystal waveguide[J]. IEEE Transactions on Nano Technology, 2015, 14(3): 407-426.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部