期刊文献+

基于多分辨统计模型和曲面恢复的腹部图像分割算法 被引量:2

An Abdominal Image Segmentation Algorithm based on Multi-resolution Statistical Model and Surface Recovery
在线阅读 下载PDF
导出
摘要 针对腹部器官边缘模糊、形状差异大、小样本集合难建立统计模型等问题,提出了基于多分辨率统计集成模型和曲面缺失数据恢复的混合图像分割算法。该算法根据器官模型的纹理特征,建立外观轮廓模型;并定义标志点自信度。对于自信度较高的点,使用基于主动图像搜索和模型变形的方法进行分割;将自信度较低的点视为未知点,利用统计模型和自信度高的已知点进行数据恢复。实验结果表明,该混合算法可成功地降低器官分割的平均误差。 The segmentation of abdominal CT series is a challenging task due to problems such as blur edges, large variance among individuals and small sample sizes. In this paper, a hybrid 3D surface segmentation algorithm based on a multi-resolution integrated model and missing data recovery technique is proposed. The appearance models to characterize the texture features around surface points are established, and the"confidence level (CFL)"for each point is defined. For the points which have high confidence, segmentation is accomplished by active image searching and model deformation. While for the points which have low confidence, instead of using unreliable edge information, data recovery technique is applied based on a statistical deformable model and available high confidence points. The experimental results demonstrate that the Hybrid-MISTO achieves the lowest segmentation error compared with a variety of state-of-the-art techniques such as Snake, ASM, and MISTO.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第3期481-489,共9页 Journal of Image and Graphics
基金 中国博士后科学基金项目(20070421126) 陕西省教育厅科学研究计划项目(07JK381)
关键词 腹部图像 图像分割 多分辨率 主动形状模型 数据恢复 abdominal image, image segmentation, multi-resolution, active shape model, data recovery
  • 相关文献

参考文献23

  • 1何晖光,田捷,赵明昌,杨骅.基于分割的三维医学图像表面重建算法[J].软件学报,2002,13(2):219-226. 被引量:59
  • 2陆仁枝,宋志坚,唐厚君.CT序列图像分割的实现及分割结果的重建[J].计算机工程,2003,29(13):152-154. 被引量:30
  • 3何晓乾,陈雷霆,沈彬斌,房春兰.医学图像三维分割技术[J].计算机应用研究,2007,24(2):13-16. 被引量:16
  • 4Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J]. International Journal of Computer Vision, 1988,1 (4) : 321- 331.
  • 5Cootes T F, Taylor C J, Cooper D H. Active shape models-their training and applications [ J ] . Computer Vision and Image Understanding, 1995,61 ( 1 ) : 38-59.
  • 6Hill A, Thornham A, Taylor C J. Model-based interpretation of 3-D medical images [ C]//Proceedings of the 4th British Machine Vision Conference. Guildford, England: the British Machine Vision Association, 1993 : 339-348.
  • 7Cootes T F,Taylor C J. Combining point distribution models with shape models based on finite element analysis [ J]. Image and Vision Computing. 1995,13 (5) : 403-409.
  • 8Brett A D, Taylor C J. A method of automated landmark generation for automated 3-D PDM construction [J]. Image Vision Computing, 2000,18 ( 9 ) : 739- 748.
  • 9Kelemen A, Szekely G, Gerig G. Three- dimensional model-based segmentation of Brain MRI [ J]. IEEE Transactions on Medical Imaging, 1999,18 ( 10 ) : 828- 839.
  • 10Rueckert D, Frangi A F, Schnabel J A. Automatic construction of 3D statistical deformation models using non-rigid registration [ C ] //Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Heidelberg, German: Springer LNCS 2208, 2001:77-84.

二级参考文献56

  • 1Horstmann.C.S Cornell.G.Java2核心技术(卷2):高级特性[M].北京:机械工业出版社,2000..
  • 2Seong L, Yong J, Sung Y. Automatic Liver Segmentation for Volume Measurement in CT Images[J]. Journal of Visual Communication and Image Representation, 2006, 17(4): 860-875.
  • 3Zijdenbos A P, Dawant B M. Brain Segmentation and White Matter Lesion Detection in MR Images[J]. Critical Reviews in Biomedical Engineering, 1994, 22(5): 401-466.
  • 4Lorensen W E, Cline H E. Marching Cubes: A High Resolution 3D Surface Construction Algorithm[J]. Computer Graphics, 1987, 21(4): 169-169.
  • 5Castleman K R. Digital Image Processing[M]. [S.l.]: Prince Hall, 1996.
  • 6Udupa J K, Samarasekera S. Fuzzy Connectedness and Object Definition: Theory, Algorithms and Application in Image Segmentation[J]. Graphical Models and Image Processing, 1996, 58(3): 246-261.
  • 7Hadziavdic V. A Comparative Study of Active Contour Models for Boundary Detection in Brain Images[D]. Tromso, Norway: University of Tromso. 2000.
  • 8Hum M A, Mardia K V. Bayesian Fused Classification of Medical Images[J]. IEEE Transaction on Medical Imaging, 1996, 15(6): 850-858.
  • 9Worring M, Smeulders A W M. Parameterized Feasible Boundaries in Gradient Vector Fields[J]. Computer Vision and Image Understanding, 1996, 63(1): 35-144.
  • 10Chen Ting, Metaxas D. A Hybrid Framework for 3D Medical Image Segmentation[J]. Medical Image Analysis, 2005, 9(6): 547-565.

共引文献103

同被引文献18

  • 1CARRAGEE E J. Persistent low back pain [ J]. New England Jour- nal of Medicine, 2005, 352(18) : 1891 - 1898.
  • 2LAW M W K, TAY K Y, LEUNG A, et al. Intervertebral disc seg- mentation in MR images using anisotropic oriented flux[ J]. Medical Image Analysis, 2013, 17(1) : 43 -61.
  • 3BENJELLOUN M, MAHMOUDI S, LECRON F. A framework of vertebra segmentation using the active shape model-based approach [J]. Journal of Biomedical Imaging, 2011, 2011: 621905.
  • 4XU C Y, PRINCE J L. Snakes, shapes, and gradient vector flow [J]. IEEE Transactions on Image Processing, 1998, 7(3): 359 - 369.
  • 5SETHIAN J A. Level set methods and fast marching methods: evol- ving interfaces in computational geometry, fluid mechanics, comput- er vision, and materials science [ M]. Cambridge: Cambridge Uni- versity Press, 1999.
  • 6COOTES T F, TAYLOR C J, LANITIS A. Multi-resolution search with active shape models [ C]//Proceedings of the 12th IAPR Inter- national Conference on Pattern Recognition, Conference A: Comput- er Vision & Image Processing. Piscataway, NJ: IEEE Press, 1994, h 610-612.
  • 7COOTES T F, EDWARDS G J, TAYLOR C J. Active appearance models [ J]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2001, 23(6): 681-685.
  • 8COOTES T F, EDWARDS G, TAYLOR C J. Comparing active shape models with active appearance models [ C]// Proceedings of British Machine Vision Conference. [ S. 1. ] : BMVA Press, 1999, 1: 173-183.
  • 9DAVIES R H, TWINING C J, COOTES T F, et al. A minimum description length approach to statistical shape modeling [ J]. IEEE Transactions on Medical Imaging, 2002, 21(5): 525 -537.
  • 10THODBERG H H. Minimum description length shape and appear- ance models [ C]// Information Processing in Medical Imaging, LNCS 2732. Berlin: Springer-Verlag, 2003:51-62.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部