期刊文献+

自适应平方根无迹卡尔曼滤波算法 被引量:17

Adaptive square-root unscented Kalman filter algorithm
在线阅读 下载PDF
导出
摘要 将高斯过程回归融入平方根无迹卡尔曼滤波(SRUKF)算法,本文提出了一种不确定系统模型协方差自适应调节滤波算法.该算法分为学习和估计两部分:学习阶段用高斯过程对训练数据进行学习,得到系统回归模型及噪声协方差;估计阶段由回归模型代替状态方程和观测方程,相应的噪声协方差实时自适应调整.该方法克服了传统方法容易受系统动态模型不确定性和噪声协方差不准确限制的问题,仿真结果验证了算法的有效性. By combining the classical square root uncented Kalman filter(SRUKF) with Gaussian process regression, we derive a filter algorithm for an uncertain system model with inaccurate noise covariance. The new algorithm includes a learning stage and an estimation stage. In the first stage, Gaussian process regression is applied to learn the training data to obtain the regression model and the noise covariance of the dynamic system. In the second stage, state equations and observation equations are substituted by their regression models, respectively; the noise covariance is adaptively adjusted by using the Gaussian kernel function real-time. Thus, the problem of uncertain system model and inaccurate noise covariance in the classical filters are solved. Simulation results show the new algorithm is effective.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第2期143-146,共4页 Control Theory & Applications
关键词 高斯过程回归 平方根无迹卡尔曼滤波器 自适应 Gaussian process regression square root unscented Kalman filter adaptive
  • 相关文献

参考文献7

  • 1SIMON H. Kalman Filtering and Neural Networks[M]. New York: John Wily & Sons, Inc, 2001.
  • 2ERIC W, RUDOLPH M, NELSON A T. Dual estimation and the unscented transformation[J]. Advances in neural information processing systems, 2000, 12(1): 666 - 672.
  • 3RASMUSSEN C E, WlLLANMS C K I. Gaussian Processes for Machine Learning[M]. Boston: MIT Press, 2005.
  • 4FERRIS B, HAHNEL D, FOX D. Gaussian processes for signal strength-based location estimation[C]//Proceedings of Robotics: Science and Systems. USA: Philadelphia, 2006:207 - 213.
  • 5PLAGENMAN C, FOX D, BURGARD W. Efficient failure detection on mobile robots using Gaussian process proposals[C]//Proceedings of the International Joint Conference on Artificial Intelligence. INDIA: Hyderabad, 2007:378 - 384.
  • 6MACKAY D J C. Comparison of approximate methods for handling hypcrparameters[J]. Neural Computation, 1999, 12(7): 278 - 286.
  • 7DAVID H, TIITERTON, WESTON J L. Strapdown Inertial Navigation Technology[M]. Stevenage, IEE, 2004.

同被引文献218

引证文献17

二级引证文献316

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部