期刊文献+

熔盐电解法制备高纯钛粉 被引量:11

Preparation of high-purity titanium powder by molten-salts electrolysis
在线阅读 下载PDF
导出
摘要 以海绵钛作可溶阳极,纯钛板为阴极,NaCl-KCl-TiClx混合熔盐作电解质,在电解温度为900~980℃、阴极电流密度为0.1~0.6A/cm2、初始可溶钛浓度2%~8%的条件下,电解24h制备高纯钛粉,研究初始可溶钛浓度对钛粉中杂质元素含量的影响,以及电流密度和初始可溶钛浓度对电流效率及钛粉形貌的影响。结果表明,钛粉杂质含量完全达到高纯钛粉的标准,提高初始可溶钛浓度可降低杂质含量;在较高的阴极电流密度以及高的初始可溶钛浓度下电解效率较高;在阴极电流密度较高时钛粉为细小的树枝状晶体,而在阴极电流密度较低时得到较粗大均匀的结晶粉体。 High purity titanium powder was prepared by molten-salts electrolysis,using NaCl-KCl-TiClx mixed molten salts as electrolyte,titanium sponge as anode,titanium plate as cathode,electrolysis temperature of 900~980 ℃,current density of cathode of 0.1 A/cm2~0.6 A/cm2,initial soluble titanium concentration of 2%~8% and electrolysis time of 24 hours. Both the effect of initial soluble titanium concentration on impurity elements,and the effect of current density and initial soluble titanium concentration on morphology of titanium powder,have been studied. The experimental results show that the impurity elements content can meet the standard of high-purity titanium powder,the impurity elements content can be decreased by increasing initial titanium concentration,higher current density and initial titanium concentration can improve the current efficiency,and the titanium powder is smaller dendritical crystal at higher current density while it is bigger and uniform block crystal at lower current density.
出处 《粉末冶金材料科学与工程》 EI 2010年第1期70-73,共4页 Materials Science and Engineering of Powder Metallurgy
基金 国家杰出青年科学基金资助项目(50825102)
关键词 熔盐电解 高纯钛粉 电流密度 可溶钛浓度 molten-salts electrolysis high-purity titanium powder current density soluble titanium concentration
  • 相关文献

参考文献8

  • 1刘彬,刘延斌,杨鑫,刘咏.TITANIUM 2008:国际钛工业、制备技术与应用的发展现状[J].粉末冶金材料科学与工程,2009,14(2):67-73. 被引量:37
  • 2ERIC Nyberg, MEGAN Miller, KEVIN Simmons, et al. Manufacturers need better quality titanium PM powders [J]. Metal Powder Report, 2005, 60(10): 8-13.
  • 3YASUNORI Yoshimura, YASUHIDE Inoha. Method for obtaining high purity titanium [P]. US5232485. 1993-08-03.
  • 4孙康.金属钛粉及其制取方法[J].有色矿冶,1996,12(4):31-33. 被引量:9
  • 5NISHIMURA E, KUROKI M. Method and apparatus for producing a high-purity titanium: US, 5336378 [P]. 1994-10-9.
  • 6卢维昌 徐永兰.电解精炼回收废海绵钛及对电极过程机理的初步分析.稀有金属,1980,3:31-37.
  • 7哥宾克ВГ,安奇平ЛН,奥列索夫ЮГ,等.钛的熔盐电解精炼[M].高玉璞译.北京:冶金工业出版社,1981:25-32.
  • 8杨绮琴 刘冠昆 方北龙.低价钛浓度和价比对钛的电结晶的影响.金属学报,1980,3:365-367.

二级参考文献27

  • 1欧阳鸿武,余文焘,唐勇,陈欣.特种粉末选择性激光烧结快速成形技术[J].粉末冶金材料科学与工程,2007,12(1):1-7. 被引量:15
  • 2SYLVAIN G. Titanium sponge production in Kazakhstan, Russia and Ukraine: International Titanium Association. TITANIUM 2008[C/D]. Las Vegas, USA, 2008.
  • 3TAKESHI K. Update of titanium industry in Japan: International Titanium Association. TITANIUM 2008[C/D]. Las Vegas, USA, 2008.
  • 4HANCHEN W. The rapid development of Chinese titanium industry: International Titanium Association. TITANIUM 2008[C/D]. Las Vegas, USA, 2008.
  • 5FAIZULLA F, PENGSHOU Q. China titanium sponge industry and foreign trade trends: International Titanium Association. TITANIUM 2008[C/D]. Las Vegas, USA, 2008.
  • 6FAIZULLA F, PENGSHOU Q. China titanium sponge industry and foreign trade trends: International Titanium Association. TITANIUM 2008[C/D]. Las Vegas, USA, 2008.
  • 7HOLZ M. The global titanium market and the European challenge: International Titanium Association. TITANIUM 2008[C/D]. Las Vegas, USA, 2008.
  • 8KLENZ E. Titanium Industry overview: International Titanium Association. TITANIUM 2008[C/D]. Las Vegas, USA, 2008.
  • 9CORACIDES M. Next generation product family, Business overview: International Titanium Association. TITANIUM 2008[C/D]. Las Vegas, USA, 2008.
  • 10Opportunities for Low Cost Titanium in Reduced Fuel Consumption, and Enhanced Durability Heavy-Duty Vehicles, U. S. Department of Energy, 2002-7- . www. ehktechnologies.com,.

共引文献45

同被引文献122

引证文献11

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部