期刊文献+

基于单元不同长宽比网格划分的有限元误差分析研究 被引量:15

A Study of Sensitivity to Mesh Distortion of Isoparameter Elements
在线阅读 下载PDF
导出
摘要 有限元分析在工程上已得到广泛应用,有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。针对有限元分析中单元不同长宽比网格划分所产生的误差进行了分析研究,提出了有限元模拟中单元的长宽比网格划分所产生的误差估算方法,通过实证计算分析研究得出单元长宽比网格划分对计算结果具有重要影响,建立了单元不同长宽比对计算结果误差影响的边界指标,且指出单元长宽比的影响程度受单元形状影响较大,分析研究结果具有重要的现实指导作用和理论价值。 The finite element analysis widely used in projects, the finite element grid division is a very important step of the hnlte element value simulation analyses, it is directly affecting the accuracy of the following value computation analytical results. This paper conducts a study of sensitivity to mesh distortion of isoparameter elements, proposes the finite element error estimation method, reaches the conclusion that unit grid division has a very important influence on computation results through the real diagnosis computation research, establishes the boundary target which affects computation errors related to different length and breadth ratio units. It also points out that the influence of the computation result error on unit length and breadth ratio is bigger because of the influence of unit shape, the findings have very important functions and they are theoretically valuable.
作者 漆文邦 郑超
出处 《中国农村水利水电》 北大核心 2010年第2期108-110,113,共4页 China Rural Water and Hydropower
关键词 有限元 网格划分 奇异网格 finite element grid division mesh distortion
  • 相关文献

参考文献11

  • 1O C Zienkiewicz, Y K Cheung. The finite element method in continuum and structural meehanics[Z]. McGraw Hill, New York, 1967.
  • 2N S Lee, K J Bathe. Effects of element distortions on the performance of isoparametrie elements[J]. Int. J. Numer. Methods Engng., 1993,36:3 553 -3 576.
  • 3S N Lautersztajn, A Samuelsson. Further discussion on four-node isoparametric quadrilateral elements in plane bending[J]. Int. J. Numer. Methods Engng. , 2000,47:129-140.
  • 4E L Wilson, R L Taylor, W P Doherty, et al. Incompatible displacement models[C]//S J Fenves. Numerical and computational methods in structural mechanics. New York:Academic Press, 1973:43-57.
  • 5R L Taylor, P J Beresford, E L Wilson. A nonconforming element for stress analysis[J]. Int. J. Numer. Methods Engng. , 1976,10:1 211-1 219.
  • 6T H H Pian, K Sumihara. Rational approach for assumed stress finite elements[J].Int. J. Numer. Methods Engng., 1984,20:1 685-1 695.
  • 7J C Simo, M S Rifai. A class of assumed strain methods and the method of incompatible modes[J]. Int. J. Numer. Methods En gng., 1990,29:1 595- 1 638.
  • 8X M Chen, S Cen, Y Q Long, et al. Membrane elements insensi rive to distortion using the quadrilateral area coordinate method [J]. Comput. Struct., 2004,82:35-54.
  • 9X H Tang, C Zheng, J H Zhang. Crack propogation by polygonal finite element method[Z]. Acta Mechanica Siniea. Submitted.
  • 10S P Timoshenko, J N Goodier. Theory of Elasticity, third ed [Z]. McGraw, New York, 1970.

同被引文献92

引证文献15

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部