期刊文献+

Analysis of Chaotic Dynamics in a Two-Dimensional Sine Square Map 被引量:1

Analysis of Chaotic Dynamics in a Two-Dimensional Sine Square Map
原文传递
导出
摘要 We study an N-dimensional system based upon a sine map, which is related to the simplified model of an opto-electronic system. The system behavior is analyzed with the tools of nonlinear dynamics (bifurcations in the parameter plane, critical manifolds, basins of attraction, chaotic attractors). Our study relies on a two-dimensional system (N=2). It is interesting that this system shows the existence of bounded chaotic orbits, which can be considered for secure transmissions. We study an N-dimensional system based upon a sine map, which is related to the simplified model of an opto-electronic system. The system behavior is analyzed with the tools of nonlinear dynamics (bifurcations in the parameter plane, critical manifolds, basins of attraction, chaotic attractors). Our study relies on a two-dimensional system (N=2). It is interesting that this system shows the existence of bounded chaotic orbits, which can be considered for secure transmissions.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第2期33-36,共4页 中国物理快报(英文版)
基金 Supported by the National Science Fund for Distinguished Young Scholars under Grant No 60725104, the National Basic Research Program of China under Grant No 2007CB310706, the National High-Technology Research and Development Program of China under Grant Nos 2008AA01Z447, 2008AA011002 and 2009AA01Z215, the National Natural Science Foundation of China under Grant Nos 60873263, 60932002 and 60932005, the Research Fund for the Doctoral Program of Higher Education under Grant No 20060614018, Youth Foundation of University of Electronic Science and Technology of China under Grant No L0801010jx0815, and the French Project ANR05RNRT02001 ACSCOM.
关键词 Statistical physics and nonlinear systems Statistical physics and nonlinear systems
  • 相关文献

参考文献10

  • 1Larger L and Fournier-Prunaret D 2005 European Conference on Circuit Theory and Design (Cork, Ireland 28 August-2 September 2005) Ⅱ p 161.
  • 2Larger L, Cenin E, Udaltsov V S and Poinsot S 2005 J. Opt. Technol. T2 29.
  • 3Bischi G I, Mamman C and Gardini L 2000 Chaos, Solitons Fraetals 11 543.
  • 4Xu J 2006 Congres des Doctorants EDSYS (Tarbes, France 11 May 2006) p 35.
  • 5Charge P, Xu J, Fournier-Prunaret D and Taha A K 2007 15th IEEE International Workshop on Nonlinear Dynamics of Electronic Systems (Tokushima, Japan 23-26 July 2007) p 141.
  • 6Mira C 1987 Chaotic Dynamics (Singapore: World Scientific) chap 1 p 59.
  • 7Carcasses J P 1993 Int. J. Bif. Chaos 3 869.
  • 8Mira C, Gardini L, Barugola A and Cathala J C 1996 World Scientific Series A 20 636.
  • 9Canovas J 2001 Chaos, Solitons & Fractals 12 1259.
  • 10Mira C, Fournier-Prunaret D, Gardini L, Kawakami H and Cathala J C 1994 Int. J. Bifur. Chaos Appl. Sci. Engin. 4 343.

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部