期刊文献+

超临界水中甲酸分解反应动力学的密度泛函理论研究

DENSITY FUNCTIONAL THEORY STUDY ON KINETICS OF FORMIC ACID DECOMPOSITION IN SUPERCRITICAL WATER
原文传递
导出
摘要 采用密度泛函方法(B3LYP)在6-311+g(3df,2p)基组水平上,针对甲酸在超临界水中分解,研究了HCOOH+2H_2O反应和HCOOH+3H_2O反应的微观动力学机理。将理论计算结果与已有的实验结果对比发现,甲酸在超临界水中分解主要通过HCOOH+3H_2O反应机理进行,存在脱羧反应R(HCOOH+3H_2O)→d→TSd/e→e→TSe/P3→P3和脱羰反应R(HCOOH+3H_2O)→f→TSf/P4→P4两条主反应通道。利用传统过渡态理论(TST)计算得到两条主通道速控步骤在650~1500 K温度范围内的速率常数k_3和k_4,其表达式分别为k_3=2.99×10^(12)exp(-169.89 kJ·mol^(-1)/RT)s^(-1)和k_4=3.00×10~9exp(-159.01 kJ·mol^(-1)/RT)s^(-1)。 HCOOH+2H2O reaction and HCOOH+3H2O reaction have been investigated theoretically at the B3LYP/6-311+g(3df,2p) level. A comparison of the caculations with experimental data in a literature reveals that formic acid decomposes in supercritical water through the reaction mechanism of HCOOH+3H2O. There are two major reaction channels, i.e. decarboxylation reaction channel R(HCOOH+3H2O)→d→TSd/e→e→TSe/P3→P3 and dehydration reaction channel R(HCOOH +3H2O)→f→TSf/P4→P4. The rate constant of step e→TSe/P3→P3 is k3= 2.99 ×10^12exp(-169.89 kJmol^-1/RT) s^-1 and the rate constant of step f→TSf/P4→P4 is k4= 3.00 ×10^9exp(-159.01 kJ,mol^-1/RT) s^-1, which are calculated using the classical transition state theory (TST) in a temperature range of 650-1500K.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2010年第2期343-346,共4页 Journal of Engineering Thermophysics
基金 国家重点基础研究发展规划项目(No.2009CB220007)
关键词 甲酸 超临界水 密度泛函理论 反应机理 动力学 formic acid supercritical water density functional theory reaction mechanism kinetics
  • 相关文献

参考文献6

二级参考文献32

  • 1毛肖岸,郝小红,张西民,郭烈锦.超临界水中葡萄糖气化制氢实验研究[J].化学工程,2004,32(5):25-28. 被引量:14
  • 2吕友军,郭烈锦,郝小红,冀承猛.锯木屑在超临界水中气化制氢过程的主要影响因素[J].化工学报,2004,55(12):2060-2066. 被引量:16
  • 3吕友军,冀承猛,郭烈锦.农业生物质在超临界水中气化制氢的实验研究[J].西安交通大学学报,2005,39(3):238-242. 被引量:43
  • 4闫秋会,郭烈锦,梁兴,张西民.煤与生物质共超临界水催化气化制氢的实验研究[J].西安交通大学学报,2005,39(5):454-457. 被引量:17
  • 5ASGHARI F S,YOSHIDA H.Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water[J].Ind Eng Chem Res,2006,45 (7),2163-2173.
  • 6KABYEMELA B M,ADSCHIRI T,MALALUAN R M,et al.Glucose and fructose decomposition in sub-critical and supercritical water; detailed reaction pathway,mechanisms,and kinetics[J].Ind Eng Chem Res,1999,38(8):2888-2895.
  • 7OSADA M,WATANABE M,SUE K,et al.Water density dependence of formaldehyde reaction in supercritical water[J].J of Supercritical Fluids,2004,28 (2):219-224.
  • 8OSADA M,SATO O,WATANABE M,et al.Water density effect on lignin gasification over supported noble metal catalysts in supercritical water[J].Energy & Fuels,2006,20(3):930-935.
  • 9SINAG A,KRUSE A,SCHWARZKOPF V.Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3[J].Ind Eng Chem Res,2003,42(15).3516-3521.
  • 10YOSHIDA K,WAKAI C,MATUBAYASI N,et al.NMR spectroscopic evidence for an intermediate of formic acid in the water-gas-shift reaction[J].J Phys Chem:A,2004,108(37):7481-7482.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部