期刊文献+

基于BP神经网络和设备特性的工业设备备件需求预测 被引量:22

Spare Parts Demand Forecasting Method Based on BP Neural Networks and Equipment Characters
在线阅读 下载PDF
导出
摘要 目前备件需求预测的研究在历史数据的选取和预测方法上存在诸多不合理,如缺少数据预处理及与忽视数据与设备的特性之间的关系,需要给予解决。在考虑不同备件之间需求相关性进行预处理的基础上,以某型大型空气压缩机为例,利用BP神经网络方法,对其备件历史需求数量的时间序列数据建立预测模型。最后将预处理后的历史数据输入到神经网络预测模型之中,并将模型的预测结果与未考虑备件之间需求相关性的预测结果进行比较,可以有效解决神经网络的"欠训练"问题,平均偏差率显著降低。 At present, there are some mistakes in choice, pretreatment and forecasting of time series datum of spare parts demand in some researches, such as improper data set, using raw datum indiscriminately and ignoring the relationship between the datum and the equipments' characters, which need to be improved. Taking the large-size air compressor as an example, its spare parts historical demand data series were pretreated. Based on this a forecast model of time series demand of spare parts was presented with BP neural networks. In the end, the processed demand time se- ries datum were input into neural networks forecasting model. The forecasting results between raw datum and processed datum, which were using neural networks, were compared . The phenomena of "lack-training" vanished, and the average deviation rate remarkably reduced.
出处 《机械设计与研究》 CSCD 北大核心 2010年第1期72-76,共5页 Machine Design And Research
基金 863计划资助项目(2007AA04Z189E)
关键词 备件需求 神经网络 设备特性 预测 spare parts demand neural networks equipment' s character forecast
  • 相关文献

参考文献6

  • 1史耀媛,史忠科.基于非单点模糊正则网络的时间序列预测模型[J].西北大学学报(自然科学版),2006,36(6):887-890. 被引量:7
  • 2Gupta U C, T Rao. On the M/G/1 machine interference model with Spares [ J ]. European Journal of Operational Research, 1996, 89 (1) :164 -171.
  • 3Croston J D. Forecasting and stock control for intermittent demands [ J ]. Operational Research Quarterly, 1972, 23 (3) :289 - 303.
  • 4Willemain T R, Smart C N, Schwarz H F. A new approach to forecasting intermittent demand for service parts inventories [ J ]. International Journal of Forecasting, 2004, 20 ( 3 ) :375 - 387.
  • 5Syntetos A A, Boylan J E. The accuracy of intermittent demand estimates [ J ]. International Journal of Forecasting, 2005, 21 (2) : 303 -314.
  • 6Bagchi U. Modeling lead-time demand for lumpy demand and variable lead time [ J ]. Naval Research Logistics, 1987, 34 ( 5 ) : 687 - 704.

二级参考文献8

共引文献6

同被引文献178

引证文献22

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部