期刊文献+

一种改进的分枝定界半监督支持向量机学习算法 被引量:4

An Improved Learning Algorithm for Branch and Bound for Semi-Supervised Support Vector Machines
在线阅读 下载PDF
导出
摘要 分枝定界半监督支持向量机,由于其实现的是全局最优化,因而可以作为其他半监督学习算法的一个基准.针对分枝定界半监督支持向量机中存在的缺陷,提出一种改进的分枝定界半监督支持向量机学习算法.该算法重新对下界的估计进行定义,从而降低了各结点计算下界的时间复杂度;同时利用支持向量机的几何特点确定分枝结点,以提高算法的运算速度.实验分析表明本文提出的算法具有精度高、鲁棒性强等优点. Branch and bound semi-supervised support vector machines as an exact globally optimization is useful for benchmarking practical semi-supervised support vector machines implementations. An improved learning algorithm for branch and bound for semi-supervised support vector machines is presented,concerning the defects of the branch and bound for semi-supervised support vector machines. The estimations of the node lower bound are redefined, which can reduce time complexity of computing the lower bound on every node. Branching nodes are determined by using the geometric characteristic of the support vector machines, which can improve the operation speed simultaneously. Experimental results show that modified algorithm has high precision and strong robustness.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第2期449-454,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60873037 No.60673131)
关键词 半监督学习 支持向量机 分枝定界 统计学习理论 semi-supervised learning support vector machines branch and bound statistic theory
  • 相关文献

参考文献11

  • 1T Joachims. Transductive inference for text classification using support vector machines [ A]. Proceedings of the 16th International Conference on Machine Learning [ C]. Slovenia, 1999. 200 - 209.
  • 2O Chapelle,A Zent. Semi-supervised classification by low density separation [ A ]. Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics[ C ]. Barbados, 2005.57 - 64.
  • 3R Collobert, F Sinz, J Weston,L Bottou. Large scale transductive SVMs[ J] .Journal of Machine Learning Research,2006,7: 1687- 1712.
  • 4V Sindhwani, S Keerthi, O Chapelle. Deterministic annealing for semi-supervised kernel machines[ A ]. Proceedings of the 23rd international Conference on Machine Learning[ C ]. Pittsburgh: ACM,2006. 841 - 848.
  • 5O Chapelle, M Chi, A Zien. A continuation method for semisupervised SVMs [ A ]. Proceedings of The 23rd International Conference on Machine Learning [ C ]. Pittsburgh, 2006.185 - 192.
  • 6T De Bie, N Cristianini. Semi-supervised learning using semidefinite programming[ A ]. O ChapeUe, B Schoelkopf, A Zen. Semi-supervised Learning[M]. USA: MIT Press, 2006. 8134 - 152.
  • 7O Chapelle, V Sindhwani, S S Keenhi. Optimization techniques for semi-supervised support vector machines[ J]. Journal of Machine Learning Research, 2008,9: 203 - 233.
  • 8K Bennett, A Demiriz. Semi-supervised support vector machinese[ A ]. Advances in Neural Information Processing Systems[ C]. Colorado, 1998. 368 - 374.
  • 9O Chapelle, V Sindhwani, S Keerthi. Branch and bound for se- mi-supervised support vector machine[ A ]. Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems[ C]. British Columbia, 2006.217 - 224.
  • 10王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:96

二级参考文献32

  • 1Yu SX, Shi J. Segmentation given partial grouping constraints. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26(2): 173-183.
  • 2Hertz T, Shental N, Bar-Hillel A, Weinshall D. Enhancing image and video retrieval: Learning via equivalence constraint. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Madison: IEEE Computer Society, 2003.668-674.
  • 3Wagstaff K, Cardie C, Rogers S, Schroedl S. Constrained K-means clustering with background knowledge. In: Brodley CE, Danyluk AP, eds. Proc. of the 18th Int'l Conf. on Machine Learning. Williamstown: Morgan Kaufmann Publishers, 2001. 577-584.
  • 4Klein D, Kamvar SD, Manning CD. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In: Sammut C, Hoffmann AG, eds. Proc. of the 19th Int'l Conf. on Machine Learning. Sydney: Morgan Kaufmann Publishers, 2002. 307-314.
  • 5Wagstaff K, Cardie C. Clustering with instance-level constraints. In: Langley P, ed. Proc. of the 17th Int'l Conf. on Machine Learning. Morgan Kaufmann Publishers, 2000. 1103-1110.
  • 6Zhou D, Bousquet O, Lal TN, Weston J, Scholkopf B. Learning with local and global consistency. In: Thrun S, Saul L, SchSlkopf B, eds. Advances in Neural Information Processing Systems 16. Cambridge: MIT Press, 2004. 321-328.
  • 7Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,22(8): 888-905.
  • 8Gu M, Zha H, Ding C, He X, Simon H. Spectral relaxation models and structure analysis for k-way graph clustering and bi-clustering. Technical Report, CSE-01-007, Penn State University, 2001.
  • 9Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. In: Dietterich TG, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems (NIPS) 14. Cambridge: MIT Press, 2002, 894-856.
  • 10Meila M, Xu L. Multiway cuts and spectral clustering. Technical Report, 442, University of Washington, 2004.

共引文献101

同被引文献46

  • 1易星.半监督学习若干问题的研究[D]清华大学,清华大学2004.
  • 2MARUYAMA K I,MARUYAMA M,HIDETOSHI M,etal.A method to make multiple hypotheses with high cu-mulative recognition rate using SVMs. Pattern Recognition . 2004
  • 3Vladimir N Vapnik.Statistical Learning Theory. . 1998
  • 4X J Zhu.Semi-supervised learning literature survey. Technical Report 1530, Computer Sciences, University of Wisconsin-Madison . 2005
  • 5Bruzzone, L,Chi, M,Marconcini, M.A novel transductive SVM for the semisupervised classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing . 2006
  • 6Vapnik VN.The Nature of Statistical Learning Theory. . 1995
  • 7Joachims T.Transductive inference for text classification using support vector machines. Proceedings of the 16th International Conference on Machine Learning . 1999
  • 8Chen YS,Wang GP,Dong SH.Learning with progressive transductive support vector machines. Pattern Recognition . 2003
  • 9Chen Peiyuan,Pedersen T,Bak-Jensen B,et al.ARIMAbased time series model of stochastic wind power generation[J].IEEE Journals and Magazines,2010,25(2):667-676.
  • 10Zhang Rui,Xu Zongben,Huang Guangbin,et al.Global convergence of online BP training with dynamic learning rate[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(2):330-341.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部