期刊文献+

基于最小熵正则化的半监督分类 被引量:1

Semi-Supervised Classification Based on Regularization of Minimum Entropy
在线阅读 下载PDF
导出
摘要 生成式模型需要对复杂的联合概率密度建模,并估计较多的参数,为此,文中提出了一种基于最小熵正则化的半监督分类算法.该算法利用Havrda-Charvat's结构α-熵作为目标的正则项,并用拟牛顿法进行求解.该算法既是判别式的,又是直推式的,从而降低了对模型的依赖程度,同时可以方便地预测训练集之外的示例标记.在UCI数据库上的仿真实验结果表明,所提出的算法即使在有标记数据较少的情况下仍能获得较低的分类误差. As the generative model needs modelling complex joint probability density and evaluating many parameters, a discriminant semi-supervised classification algorithm based on the regularization of minimum entropy is proposed. This algorithm uses Havrda-Charvat's structural α-entropy as the regularization item of the objective and employs the quasi-Newton method to solve the objective, which makes the algorithm discriminative and inductive and reduces the dependence of the algorithm on the model. At the same time, the algorithm can predict the labels of the out-of-sample data points easily. Simulated results of several UCI datasets demonstrate that the proposed algorithm is of low classification error even with few labeled data.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第1期87-91,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 广东省-教育部产学研结合项目(2007B090400031) 广东省科技计划项目(2008B080701005)
关键词 半监督学习 条件Havrda—Charvat’s结构 α-熵 正则化 模式分类 拟牛顿法 semi-supervised learning conditional Havrda-Charvat's structural c^-entropy regularization pattern classification quasi-Newton method
  • 相关文献

参考文献11

  • 1Shahshahani B, Landgrebe D. The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1994,32 ( 5 ) : 1 087- 1095.
  • 2Nigam K, McCallum A K, Thrun S, et al. Text classification from labeled and unlabeled documents using EM [ J ]. Machine Learning ,2000,39 ( 2 ) : 103-134.
  • 3Joachims T. Transduetive inference for text classification using support vector machines [ C ]//Proceedings of the 16th International Conference on Machine Learning. Bled: Morgan Kaufmann, 1999:200-209.
  • 4Zhu X, Ghahramani Z, Lafferty J. Semi-supervised learning using Gaussian fields and harmonic functions [ C ]// Proceedings of the 20th International Conference on Machine Learning. Washington D C :AAAI,2003:912-919.
  • 5Wang F, Zhang C. Label propagation through linear neighborhoods [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2008,20 ( 1 ) : 55- 67.
  • 6Blum A, Mitchell T. Combining labeled and unlabeled data with co-training [ C ]//Proceedings of the 11th Annual Conference on Computational Learning Theory. Madison: ACM, 1998:92-100.
  • 7Zhou Zhi-hua, Li Ming. Tri-training : exploiting unlabeled data using three classifiers [ J ]. IEEE Transactions on Knowledge and Data Engineering,2005,17 ( 11 ) : 1529-1541.
  • 8Li Hai-feng, Zhang Ke-shu, Jiang Tao. Minimum entropy clustering and applications to gene expression analysis [C]//Proceedings of the 3rd IEEE Computational Systems Bioinformatics Conference. Stanford : IEEE, 2004 : 142-151.
  • 9Friedman J H, Hastie T, Tibshirani R. Additive logistic regression:a statistical view of boosting [ J]. Annals of Statistics, 2000,28 (2) : 337-407.
  • 10Chapelle O, Scholkopf B, Zien A. Semi-supervised learning [ M ]. Cambridge : MIT Press ,2006 : 151-168.

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部