摘要
在研究电能质量各次谐波分量功率的过程中,除了考虑整数次各次谐波分量外,研究过程还会涉及到非整数次的谐波情况,因为在现场谐波工况的实际测量中也确实发现非整数次谐波分量的存在,因而有必要对存在非整数次谐波成分功率的数学问题进行具体的分析。当存在非整数次谐波时,在分析谐波分量的有功功率时就会涉及到非整数次谐波三角函数的正交性问题,本文主要针对存在非整数次谐波电压、谐波电流分量情形下所涉及的三角函数的正交性进行了具体的探讨与分析,为同时存在整数次与非整数次谐波工况的谐波电能分析寻求数学依据。
While determining active powers of harmonic components under state of harmonic condition during research of the harmonics in power quality, harmonics components of non-integer orders should also be taken into account besides of integer orders because of existence of harmonics components of both of them in some cases of actual harmonic measurements. It is necessary to discuss its integration characteristics relative to harmonic components of non-integer orders in mathematics. There are differences between existence of both non-integer orders and integer orders and only existence of integer orders while making integration to get average active power from harmonic measurements. The integration characteristics are analyzed and discussed in trigonometric function relative to the existence of both cases of integer orders and of non-integer orders. It seeks their mathematic base for power energy of harmonics in case of existence of non-integer orders.
出处
《电测与仪表》
北大核心
2010年第1期5-8,共4页
Electrical Measurement & Instrumentation
关键词
非整数次谐波
三角函数的正交性
谐波功率
non-integer orders of harmonics, integration characteristics under harmonics of non-integer order, active powers of harmonics