期刊文献+

飞行记录参数奇异点的处理 被引量:2

Prehandling research of flight parameter strange points based on Matlab digital filtering technique
在线阅读 下载PDF
导出
摘要 通过分析飞行记录参数奇异点的特点及产生原因,建立了奇异点在某一时间区域内连续信号的数学描述。在软件设计中应用奈奎斯特定律确定数据段窗口的大小、Matlab仿真技术、多项式和最小二乘法,检测偏移量是否超出规定阈值,提出了飞参系统记录数据的奇异值预处理的方法及软件设计思想;通过多机种多架次的大量飞行记录数据的实验,验证了采用多项式和最小二乘法是对飞参系统记录数据奇异值进行预处理的一种有效方法,对其他领域信号处理具有普遍适用性。 The paper establishes the continuous signal mathematical description of flight data strange points in one time domain by analyzing its features and causes. We Offset detection threshold exceeding the prescribed limit and put forward the method and software design process by polynomial fitting and the application of Nyquist's law to determine the size of the data segment window, Least-squares method and MATLAB simulation technique. Through large amounts of aeroengine recorded flight data experiment, is shows the polynomial fitting and least-squares method is effective for the pretreatment of strange points. Also it acquires a very good result and has widespread adaptability to other parameters dealing.
出处 《电机与控制学报》 EI CSCD 北大核心 2009年第A01期135-138,共4页 Electric Machines and Control
关键词 奇异点 多项式 最小二乘法 仿真 strange point polynomial fitting least-squares method simulation
  • 相关文献

参考文献9

二级参考文献52

共引文献92

同被引文献24

  • 1张书慧,马成林,吴才聪,韩云霞,廖宗建.变量施肥机空间数据采集与处理方法[J].农业机械学报,2004,35(4):93-96. 被引量:8
  • 2吴建刚,陈志伟,李曙林,王智.飞参记录数据计算机处理的有关问题研究[J].计算机仿真,2007,24(2):18-21. 被引量:15
  • 3胡宇轩,阎楚良.数据挖掘技术在农业机械质量控制中的应用[J].农业机械学报,2007,38(5):153-156. 被引量:6
  • 4闫楚良.飞机载荷谱实测技术与编制原理[M].北京:航空工业出版社,2010.
  • 5Yan Chuliang, Liu Kege. Theory of active reliability-based design for predetermined life of structures[ J]. Advanced Materials Research ,2008,44 - 46 : 745 - 750.
  • 6Brychta R J, TUNtrakool S, Appalsamy M, et al. Wavelet methods for spike detection in mouse renal sympathetic nerve activity[J]. IEEE Transactions on Biomedical Engineering,2007,54( 1 ) :82 -93.
  • 7Fuchs H O, Nelson D V, Burke M A, et al. Fatigue under complex loading: analyses and experiments[ M ]. Warrendale, PA: Society of Automotive Engineers, 1977:145 - 162.
  • 8Gonzalez R C,Woods R E. Digital image processing[M].New Jersey:Pearson,2010.
  • 9Hussain M Z,Sarfraz M,Hussain M. Scientific data visualization with shape preserving C1 rational cubic interpolation[J].EurJ Pure Appl Math,2010,(02):194-212.
  • 10Volkov Yu S,Bogdanov V V,Miroshnichenko V L. Shape-preserving interpolation by cubic splines[J].MATHEMATICAL NOTES,2010,(05):798-805.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部