期刊文献+

基于矩阵加权关联规则的空间粒度聚类算法

The Cluster Algorithm of Spatial Grain Based on Matrix Weighting Association Rules
在线阅读 下载PDF
导出
摘要 提出了一种基于矩阵加权关联规则的空间粒度聚类算法。该算法核心思想是根据文档特征向量矩阵提取文档的相似度,再在该关联规则算法上进行聚类来寻找相似关系的频繁项集。在粒度空间中采用相似度阀值进行调整粒度的粗细问题。通过矩阵加权关联规则算法进行聚类。通过实验表明,在处理中小型文档时,该算法的精确度优于传统Apriori算法和K—mean算法;在处理大型文档时.该算法的时间复杂度小于传统的K—mean算法。 A cluster algorithm of spatial grain based on association rules of Matrix weighting is proposed.This algorithm utilizes eigenvector matrices of the document to extract its similarity degree, and then clusters to search for the frequent items of similar relation on the basis of above-mentioned association rules.Thereafter threshold value of similarity degree will be employed to adjust the area of granularity in spatial grain.Subsequently the results of the Matrix Weighting algorithm will be clustered.Experiments suggest that the precision of this algorithm excels the Apriori and the K-mean while processing documents of middle and small size. As for large-scale documents, the Time Complexity of this algorithm is lower than that of K-mean.
作者 李泽军 LI Ze-jun (hunan Institute of Technology, Hengyang 421002, China)
出处 《电脑知识与技术》 2010年第01Z期259-261,共3页 Computer Knowledge and Technology
基金 湖南教育厅科学研究基金项目(08C248) 湖南教育厅科学研究基金项目(09C297)
关键词 关联规则 粒度 聚类算法 频繁项集 association rules granularity cluster algorithm frequent items
  • 相关文献

参考文献10

  • 1李杰,徐勇,朱昭贤,王云峰.模糊C均值算法参数仿真研究[J].系统仿真学报,2008,20(2):509-513. 被引量:19
  • 2黄名选,严小卫,张师超.查询扩展技术进展与展望[J].计算机应用与软件,2007,24(11):1-4. 被引量:53
  • 3王伦文.聚类的粒度分析[J].计算机工程与应用,2006,42(5):29-31. 被引量:19
  • 4卜东波,白硕,李国杰.聚类/分类中的粒度原理[J].计算机学报,2002,25(8):810-816. 被引量:95
  • 5KURAMOCHI M,Karypis G.Frequent Subgraph Discovery. Pro-caedings of the2001IEEE International Conference on Data Mining . 2001
  • 6Agrawal R,Imielinski T,Swami A.Mining Association Rules between Sets of Items in Large Databases. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data(SIGMOD’93) . 1993
  • 7Meidl W,Niederreiter H.Linear Complexity, k-error Linear Complexity, and the Discrete Fourier Transform. Journal of Complexity . 2002
  • 8Klaus-Robert Muller,Sebastian Mika,Gunnar Ratsch,et al.An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks . 2001
  • 9Bebel B,Krolikowski Z,Wrembel R.Formal approach to modeling a multiversion data warehouse. Bulletin of the Polish Academy of Sciences:Technical Sciences . 2006
  • 10W. Meidl,H. Niederreiter.Counting functions and expected values for the k-error linear complexity. Finite Fields and Their Applications . 2002

二级参考文献80

共引文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部