期刊文献+

基于主分量分析的矢量量化数字水印算法 被引量:12

Vector Quantization Digital Watermark Algorithm Based on Principal Component Analysis
在线阅读 下载PDF
导出
摘要 针对矢量量化过程中码书训练复杂的缺点,基于主分量分析方法对图像进行降维,根据降维后各主分量熵和标准差的差异性对其进行分类,采用非均匀矢量量化方法生成码书。在水印嵌入过程中,将水印图像嵌入降维后主分量能量适中的码书中以提高水印图像质量,利用EENNS算法代替完全搜索算法缩短编码时间。实验结果表明,该算法在提高码书质量的同时,能有效减少码书训练时间,对JPEG压缩、剪切、旋转等图像攻击也具有较强的鲁棒性。 This paper reduces the dimensionality of the images using Principal Component Analysis(PCA) to decrease computation,and the principal components classified by the entropy and the standard deviation are quantized separately. Additionally,the watermark image is embedded in the sub-codebook which the energy of principal components is medium for enhancing images quality. The EENNS algorithm is substitutes for full search algorithm because of falling encoding time. Experimental results show that the proposed algorithm not only improves codebook quality evidently,but also decreases codebook generation time obviously. In addition,it is robust to common image processing operations,such as JPEG compression,cropping,and rotation and so on.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第2期167-169,172,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60772122) 博士点基金资助项目(20070357001)
关键词 主分量分析 矢量量化 降维 码书设计 数字水印 Principal Component Analysis(PCA) Vector Quantization(VQ) dimensionality reduction codebook design digital watermark
  • 相关文献

参考文献11

  • 1Wang Feng-Hsing, Lakhmi C J, Jeng-Shyang Pan. VQ-based Watermarking Scheme with Genetic Codebook Partition[J]. Journal of Network and Computer Applications, 2007, 3(8): 304-323.
  • 2Luo Bin, Gu Wei, Guo Hui. A VQ Digital Watermark Algorithm Based on T-mixture Models Segmentation[C]//Proc. of IEEE Conference on Neural Networks and Signal Processing. Zhengjiang, China: IEEE Press, 2008: 353-358.
  • 3Shen Furao, Hasegawa O. An Adaptive Incremental LBG for Vector Quantization[J]. Neural Networks, 2006, 19(5): 694-704.
  • 4Li Yuenan, Liu Chunhe, Lu Zheming. Robust Image Watermarking Algorithm Based on Predictive Vector Quantization[C]//Proc. of the 1st International Conference on Innovative Computing, Information and Control. Beijing, China: [s. n.], 2006.
  • 5王可,王翠梅.用模拟退火算法实现语音识别中的矢量量化[J].电子科学学刊,2000,22(1):19-22. 被引量:1
  • 6冯燕,何明一,宋江红,魏江.基于独立成分分析的高光谱图像数据降维及压缩[J].电子与信息学报,2007,29(12):2871-2875. 被引量:39
  • 7陈思宝.基于t-混合模型和扩展保局投影的聚类与降维方法研究[D].合肥:安徽大学,2005.
  • 8Lee C H, Chen L H. Fast Closest Codeword Search Algoritfim for Vector Quantization[J]. lEE Processings of Vision, Image and Signal Processing, 1994, 141(3): 143-148.
  • 9向德生,熊岳山,朱更明.基于视觉特性的灰度水印自适应嵌入与提取算法[J].中国图象图形学报,2006,11(7):1026-1035. 被引量:23
  • 10孙宏伟,顾明,孙家广.改进的基于主分量分析的码书设计算法[J].计算机辅助设计与图形学学报,2005,17(10):2245-2250. 被引量:5

二级参考文献30

共引文献61

同被引文献65

引证文献12

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部