期刊文献+

用于求解对称旅行商问题的粒子群算法和蚂蚁算法的融合

COMBINING PARTICLE SWARM OPTIMISATION AND ANT COLONY OPTIMISATION TO RESOLVE SYMMETRY TRAVEL SALESMAN PROBLEM
在线阅读 下载PDF
导出
摘要 近年来,基于仿生学的随机优化技术成为学术界研究的重点问题之一,并在许多领域得到应用。粒子群优化(PSO)算法和蚂蚁算法ACO(Ant Colong Optimization)是随机全局优化的两个重要方法。PSO算法初始收敛速度较快,但在接近最优解时,收敛速度较慢,而ACO正好相反。结合二者的优势,先利用粒子群算法,再结合蚂蚁算法,以对称旅行商问题为例进行了仿真实现。实验结果表明,先利用PSO算法进行初步求解,在利用蚂蚁算法进行精细求解,可以得到较好的效果。 Recently,the random optimisation technology which is based on bionics has become researching focus in academia,and it has been applied widely in many fields.The Particle Swarm Optimisation(PSO) algorithm and the Ant Colony Optimisation(ACO) are two important random optimisation methods.PSO has a faster convergence speed at beginning but slows down when approaching the optimal solution,while ACO is just in opposite.In this paper we combined the advantages of these two algorithms,used the Particle Swarm Optimisation Algorithm first,and then integrated with the Ant Colony Optimisation,performed this way on symmetry travelling salesman problem for simulative realisation.It is showed by the experimental results,to use the PSO to resolve the problem as the first stage and then to use the Ant Colony Optimisation to further accurately resolve the problem can achieve good effect.
出处 《计算机应用与软件》 CSCD 2010年第1期224-227,共4页 Computer Applications and Software
关键词 粒子群算法 蚂蚁算法 融合 旅行商问题 Particle swarm optimisation algorithm Ant colony optimisation Combination Travelling salesman problem
  • 相关文献

参考文献6

二级参考文献40

  • 1姜昌华,胡幼华.一种求解旅行商问题的高效混合遗传算法[J].计算机工程与应用,2004,40(22):67-70. 被引量:22
  • 2蔡之华,彭锦国,高伟,魏巍,康立山.一种改进的求解TSP问题的演化算法[J].计算机学报,2005,28(5):823-828. 被引量:60
  • 3江贺,周智,邹鹏,陈国良.求解TSP问题的并集搜索的新宏启发算法[J].中国科学技术大学学报,2005,35(3):367-375. 被引量:5
  • 4王轩,李元香.一种结合局部搜索策略的求解TSP的演化算法[J].计算机工程,2006,32(9):16-18. 被引量:8
  • 5Talbi E -G, Roux O, Fonlupt C, Robilliard D. Parallel ant colonies for the quadratic assignment problem[J]. Future Generation Computer System , 2001,17 (4) : 441 -- 449.
  • 6Yu I K, Song Y H. A novel short-term generation scheduling technique of thermal units using ant colony search algorithms[J]. International Journal of Electrical Power and Energy Systems, 2001, 26(6): 471--479.
  • 7McMullen Patrick R. An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives[J]. Artificial Intelligence in Engineering, 2001, 15(3): 309--317.
  • 8Gamez Jose A, Puerta Jose M. Searching for the best elimination sequence in Bayesian networks by using ant colony optimization. Pattern Recognition Letters, 2002, 23 (1) : 261 -- 277.
  • 9Dorigo Marco, Bonabeau Eric, Theraulaz Guy. Ant algorithms and stigmergy[J]. Future Generation Computer System, 2000,16(8): 851--871.
  • 10Stutzle Thomas, Hoos Holger H. MAX-MIN ant system[J]. Future Generation Computer System, 2000,16(8) : 889--914.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部