期刊文献+

一种动态扩散粒子群算法 被引量:10

Dynamic diffusion particle swarm optimization
在线阅读 下载PDF
导出
摘要 针对粒子群算法搜索精度不高特别是对高维函数优化性能不佳问题,提出了一种动态扩散粒子群算法(DDPSO)。该算法通过非线性函数调节惯性权重,在粒子速度更新方式上增加一个动态随机数加强粒子的搜索能力,提高算法的性能,同时在一定条件下对粒子进行重新扩散,保证种群的多样性。实验结果表明,DDPSO算法的寻优能力明显高于基本PSO及其他一些改进的PSO算法,并且该算法性能稳定,更加适合高维复杂函数优化问题。 Dynamic Diffusion Particle Swarm Optimization (DDPSO) was proposed to improve the poor search quality of the standard PSO for optimizing high-dimensional function. A nonlinear function was introduced to adjust the inertia weight and it added a dynamic random number in the updating mode of particle velocity to enhance the searching ability. Meanwhile, particles were diffused again under certain conditions in order to ensure diversity of the swarm. Simulations show that dynamic diffusion particle swarm optimization has outstanding performances in high-dimensional function optimization compared with standard or other modified PSOs.
出处 《计算机应用》 CSCD 北大核心 2010年第1期159-161,共3页 journal of Computer Applications
基金 宁波市自然科学基金资助项目(2008A610002 2009A610090) 浙江教育厅项目(Y200803228)
关键词 粒子群算法 动态随机数 惯性权重 扩散 Particle Swarm Optimization (PSO) dynamic random number inertia weight diffusion
  • 相关文献

参考文献9

  • 1KENNEDY J, EBERHART R C. Particle swarm optimization [ C]// Proceedings of the IEEE International Conference on Neural Networks. Washington, DC: IEEE, 1995:1942-1948.
  • 2SHI Y, EBERHART R C. Empirical study of particle swarm optimization [ C]// CEC: International Conference on Evolutionary Computation. Washington, DC: IEEE, 1999:1945-1950.
  • 3张顶学,关治洪,刘新芝.一种动态改变惯性权重的自适应粒子群算法[J].控制与决策,2008,23(11):1253-1257. 被引量:99
  • 4陈国初,俞金寿.两群微粒群优化算法及其应用[J].控制理论与应用,2007,24(2):294-298. 被引量:23
  • 5SHELOKAR P S, SIARRY P, JAPARAMAN V K, et al. Particle swarm and ant colony algorithms hybridized for improved continuous optimization [ J]. Applied Mathematics and Computation, 2007, 188(1) : 129 - 142.
  • 6赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 7CARVALHO D F, BASTOS-FILHO C J A. Clan particle swarm optimization [ C]//CEC: IEEE Congress on Evolutionary Computation. Washington, DC: IEEE, 2008:3044-3051.
  • 8RATNAWEERA A, HALGAMUGE S K, WATON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [ J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255.
  • 9赵鹏军,刘三阳,李超.基于吸引排斥机制的粒子群优化算法[J].计算机应用,2009,29(2):542-544. 被引量:4

二级参考文献20

  • 1刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 2韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:124
  • 3李莉,李洪奇.基于混合粒子群算法的高维复杂函数求解[J].计算机应用,2007,27(7):1754-1756. 被引量:12
  • 4Kennedy J, Eberhart R. Particle swarm optimization [C]. IEEE Int Conf on Neural Networks. Piscataway: IEEE Service Center, 1995: 1942-1948.
  • 5Shi Y, Eberhart R. A modified particle swarm optimizer [C]. IEEE World Conf on Computational Intelligence. Piscataway: IEEE Press,1998: 69-73.
  • 6Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [C]. Proc of the IEEE Conf on Evolutionary Computation. Piscataway: IEEE Press, 2001 : 101-106.
  • 7Zhang L P, Yu H J, Hu S X. A new approach to improve particle swarm optimization[C]. Lecture Notes in Computer Science. Chicago: Springer-Verlag, 2003: 134-139.
  • 8Krink T, Vesterstroem J S, Riget J. Particle swarm optimization with spatial particle extension[C]. Proe of the IEEE Conf on Evolutionary Computation. Honolulu: IEEE Inc, 2002: 1474-1479.
  • 9Clerc M. The swarm and queen.. Towards deterministic and adaptive particle swarm optimization [C]. Proc of IEEE Conf on Evolutionary Computation. Washington D C, 1999: 1951-1957.
  • 10Frans van den Bergh. An analysis of particle swarm optimizers[D]. Pretoria: University of Pretoria, 2001.

共引文献251

同被引文献86

引证文献10

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部