期刊文献+

多分类簇支持向量机方法 被引量:1

Multi-class cluster support vector machines
在线阅读 下载PDF
导出
摘要 针对支持向量机的多分类问题,提出一种新颖的基于非平行超平面的多分类簇支持向量机。它针对k模式分类问题分别训练产生k个分割超平面,每个超平面尽量靠近自身类模式而远离剩余类模式;决策时,新样本的类别由它距离最近的超平面所属的类决定,克服了一对一(OAO)和一对多(OAA)等传统方法存在的"决策盲区"和"类别不平衡"等缺陷。基于UCI和HCL2000数据集的实验表明,新方法在处理多分类问题时,识别精度显著优于传统多分类支持向量机方法。 Based on the idea of nonparallel hyperplanes, a novel multi-class cluster support vector machine method was proposed to settle the multi-class classification problem of support vector machines. For a k -class classification problem, it trained k -hyperplanes respectively, and each one lay as close as possible to self-class while being apart from the rest classes as far as possible. Then, labels of new samples were determined by the class of their nearest hyperplane, thus the inherent limitations of One-Against-One (OAO) and One-Against-All (OAA) methods can be avoided, such as "decision blind-area" and "unbalanced classes". Finally, experiments on UCI and HCL2000 datasets show that the proposed method significantly outperforms traditional OAO and OAA in terms of recognition accuracy.
出处 《计算机应用》 CSCD 北大核心 2010年第1期143-145,149,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(69732010) 西南财经大学科学研究基金资助项目(QN0806)
关键词 支持向量机 超平面 核函数 手写体汉字识别 Support Vector Machine (SVM) hyperplane kernel function handwritten Chinese character recognition
  • 相关文献

参考文献7

  • 1Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2高学,金连文,尹俊勋,黄建成.一种基于支持向量机的手写汉字识别方法[J].电子学报,2002,30(5):651-654. 被引量:42
  • 3DONG J X, KRZYZAK A, SUEN C Y. An improved handwritten Chinese character recognition system using support vector machine [J]. Pattern Recognition Letters, 2005, 26(12) : 1849 - 1856.
  • 4HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[ J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
  • 5MANGASARIAN O L, WILD E W. Muhisurface proximal support vector machine classification via generalized eigenvalues[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (12) : 1 -6.
  • 6WANG Y C, CASASENT D. New support vector-based design method for binary hierarchical classifiers for multi-class classification problems[ J]. Neural Networks, 2008, 21 (4) : 502 - 510.
  • 7SAUNDERS C, GAMMERMAN A, VOVK V. Ridge regression learning algorithm in dual variables[ C]// Proceedings of the 15th International Conference on Machine Learning. San Francisco: Morgan Kanfmann Publishers, 1998:515 -521.

二级参考文献3

共引文献214

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部