摘要
圆孔衍射对光束的传输与变换、光学成像系统的衍射成像及光信息处理的调制与滤波等方面有着重要作用。先由菲涅耳-基尔霍夫衍射积分公式得到点源圆孔衍射的积分表达式,然后提出点源圆孔衍射的一种数值计算方法,推导了点源圆孔菲涅耳衍射及其特殊情况夫琅禾费衍射的解析计算式,并利用M atlab软件模拟了傍轴区的衍射场,模拟实验表明了这两种计算方法都是有效而可靠的,有利于衍射理论与技术的发展。
Circular aperture diffraction is important to the beam transmission and transformation, the diffraction imaging of optical imaging system and optical information processing. After the integral expression for the circular aperture diffraction irradiated by a point source is gotten from the Kirehhoff diffraction integral formula, a numerical calculation method is proposed, and the calculation formula for the light field of circular aperture Fresnel diffraction and its special circumstance circular aperture Fraunhofer diffraction irradiated by a point source is deduced. Then the diffraction patterns of paraxial zone are simulated with the Matlab software, and the simulations show that these two calculation methods are both effective and reliable and are conducive to the development of diffraction theory and technology.
出处
《江西科学》
2009年第6期816-819,901,共5页
Jiangxi Science
基金
江西省自然科学基金(2008GZS0045)
上饶师范学院2009年教改课题基金
关键词
圆孔衍射
菲涅耳-基尔霍夫衍射公式
数值计算
贝赛尔函数
洛默尔函数
Circular aperture diffraction irradiated by a point source, Fresnel-Kirchhoff diffraction formula, Numerical calculation, Bessel function, Lommel function