期刊文献+

一种快速核特征提取方法及其应用 被引量:2

Fast Kernel Feature Extraction Method and Its Application
在线阅读 下载PDF
导出
摘要 针对核主成分分析方法(KPCA)存在大样本集的核矩阵K计算困难问题,提出一种基于分块特征向量选择的快速核主成分分析方法。采用分块特征向量选择方法提取样本子集,用样本子集建立KPCA模型。将该方法应用于某化工过程的特征信息提取,并与全体样本的KPCA相比较。实验结果表明,两者特征提取的有效性相当,但新方法在建模和特征提取过程所耗费的时间较少。 For a large data set,there is a problem which a kernel matrix K is not easily to be computed very mach for Kernel Principal Component Analysis(KPCA).A fast principal component analysis method is proposed to solve the computation problem for kernel matrix K based on a multi-block feature vector selection.A sample set is extracted by the multi-block feature vector selection.A KPCA model is build up by the sample.The proposed method is applied to a chemical process.Experimental result shows that the proposes method is almost same compared to the KPCA based on the all sample,but,less time are spent on modeling and extracting feature for the proposed method.
作者 许亮 张小波
出处 《计算机工程》 CAS CSCD 北大核心 2009年第24期26-28,32,共4页 Computer Engineering
基金 广东省自然科学基金资助重点项目(07117421 8351009001000002) 广东省科技计划基金资助重点项目(2005B10101065)
关键词 核主成分分析方法 特征提取 特征向量选择 分块 Kernel Principal Component Analysis(KPCA) feature extraction feature vector selection block
  • 相关文献

参考文献4

  • 1Vapnik V N. Statistical Learning theory[M]. New York, USA: John Wiley and Sons Inc., 1998.
  • 2Scholkopf B, Smola A, Mubller K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J]. Neural Computer, 1998, 10(6): 1299-1319.
  • 3Baudat G, Anouar F. Feaure Vector Selection and Projection Using Kernels[J]. Neurocomputing, 2003, 55(1): 21-38.
  • 4肖健华,吴今培.基于核的特征提取技术及应用研究[J].计算机工程,2002,28(10):36-38. 被引量:27

二级参考文献1

共引文献26

同被引文献9

  • 1Weinberger K Q,Sha Fei,Saul L,et al.Learning a Kernel Matrix for Nonlinear Dimensionality Reduction[C] //Proc.of the 21st International Conference on Machine Learning.New York,USA:ACM Press,2004:106-112.
  • 2van der Maaten L J P.Dimensionality Reduction:A Comparative Review[R].Tilburg,Netherlands:Tilburg University,Tech.Rep.:TiCC-TR 2009-005,2009.
  • 3Scholkopf B,Smola A.Learning with Kernels[M].Cambridge,USA:MIT Press,2002.
  • 4Bach F R,Jordan M I.Kernel Independent Component Analysis[J].Journal of Machine Learning Research,2003,3:1-48.
  • 5Jolliffe I T.Principal Component Analysis[M].New York,USA: Springer-Verlag,1986.
  • 6Baccini A,Besse P,Falguerolles A D.A L1-norm PCA and a Heuristic Approach[C]//Proc.of Conference on Ordinal and Symbolic Data Analysis.Berlin,Germany: Springer,1996.
  • 7Ke Q,Kanade T.Robust Subspace Computation Using L1 Norm[R].Carnegie Mellon University,Tech.Rep.: CMU-CS- 03-172,2003.
  • 8Kwak N.Principal Component Analysis Based on L1-norm Maximization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(9): 1672-1680.
  • 9Newman D J,Hettich S,Blake C L,et al.UCI Repository of Machine Learning Databases[EB/OL].[2010-10-22].http://www.ics.uci.edu/-mlearn/MLRepository.html.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部