摘要
提出了暂态稳定约束下最优潮流的新方法。该方法将稳定约束的最优潮流问题分解为最优潮流和最优控制两个子问题。在最优控制迭代中,基于半无限规划的局部降阶思想,将表征暂态稳定指标的无限维不等式约束转化成分别由功角和电压积分形式表示的二维不等式约束,并通过求解系统状态轨迹以及轨迹灵敏度方程来获得二维不等式约束对各控制变量的梯度,以此作为最优控制方向来更新各控制变量。通过新英格兰10机39节点系统上的测试算例验证了所提方法的有效性和合理性。
A new method for optimal power flow with transient stability constraints (OTS) is proposed. It is composed of the conventional optimal power flow (OPF) and optimal control, which are independently solved. Based on the local reduction method of semi-infinite programming (SIP), the transient stability index expressed by the infinite dimension is converted into two dimensional inequality constraints by integration of angle and voltage formulation respectively in the process of optimal control. The optimal control direction is formed by the gradient of control variables, which is obtained by solving the system trajectory expressed by the differential algebraic equations (DAEs) and trajectory sensitivity expressed by the linear time-dependent dynamic system equations (LTDDSEs). Test results on the New England power system verified the effectiveness and reliability.
出处
《电力系统及其自动化学报》
CSCD
北大核心
2009年第6期45-50,共6页
Proceedings of the CSU-EPSA
基金
中国香港特别行政区RGC项目(PolyU:A-PA9K)
关键词
最优潮流
暂态稳定性
最优控制
电力系统
半无限规划
optimal power flow(OPF)
transient stability
optimal control
power system
semi-infinite programming