期刊文献+

Strong Labelings of Linear Forests

Strong Labelings of Linear Forests
原文传递
导出
摘要 A (p, q)-graph G is called super edge-magic if there exists a bijective function f : V(G) U E(G) →{1, 2 p+q} such that f(u)+ f(v)+f(uv) is a constant for each uv C E(G) and f(Y(G)) = {1,2,...,p}. In this paper, we introduce the concept of strong super edge-magic labeling as a particular class of super edge-magic labelings and we use such labelings in order to show that the number of super edge-magic labelings of an odd union of path-like trees (mT), all of them of the same order, grows at least exponentially with m. A (p, q)-graph G is called super edge-magic if there exists a bijective function f : V(G) U E(G) →{1, 2 p+q} such that f(u)+ f(v)+f(uv) is a constant for each uv C E(G) and f(Y(G)) = {1,2,...,p}. In this paper, we introduce the concept of strong super edge-magic labeling as a particular class of super edge-magic labelings and we use such labelings in order to show that the number of super edge-magic labelings of an odd union of path-like trees (mT), all of them of the same order, grows at least exponentially with m.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第12期1951-1964,共14页 数学学报(英文版)
基金 Supported by the Slovak VEGA (Grant No.1/4005/07) Spanish Research Council (Grant No.BFM2002-00412)
关键词 linear forest path-like tree strong super edge magic labeling linear forest, path-like tree, strong super edge magic labeling
  • 相关文献

参考文献1

二级参考文献13

  • 1Li, J.W., Zhang, Z.F. etc. A note on adjacent strong edge coloring of k(n,m). Acta Mathematicae Applicatae Sinica, 22(2): 283-286 (2006)
  • 2Wang, Z.W., Zhang, Z.F., Yah, L.H. Vertex-distinguishing edge chromatic number of Pm V Pn. Journal of Lanzhou University, 41(6): 101-102 (2005)
  • 3Zhang, Z.F. etc. On the vertex-distinguishing total coloring of graphs, Submitted.
  • 4Zhang Z.F. On the vertex-distinguishing equitable-total chromatic number of graphs. ICM 2006
  • 5Zhang, Z.F. etc. Adjacent vertex distinguishing total coloring of graph. Science in China, 34(5): 574-583(2004)
  • 6Bondy, J.A., Marty, U.S.R. Graph theory with applications. The Macmillan Press Ltd, New York, 1976
  • 7Burris, A.C., Schelp, R.H. Vertex-distinguishing proper edge-colourings. J. Graph Theory, 26(2): 70-82 (1997)
  • 8Burris, A.C. Vertex-distinguishing edge-colorings, Ph.D. Dissertation. Memphis State University, August 1993
  • 9Cerny, J., Hornak, M., Sotak, R. Observability of a graph. Math. Slovaca, 46:21 31 (1996)
  • 10Harary, F., Maybee, J.S.(Eds.) Graphs and Applications. Wiley-Interscience, New York, 1985

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部