期刊文献+

基于岭回归方法的船舶操纵运动建模 被引量:6

Modeling of Ship Manoeuvring Motion Based on Ridge Regression
在线阅读 下载PDF
导出
摘要 基于自航模试验的系统辨识方法是一种有效的船舶操纵运动建模方法。通过对舵角和转艏角速度试验数据的分析,用岭回归方法确定了船舶操纵运动数学模型中的模型参数,进行了操纵运动预报仿真并同自航模试验数据对比,数值仿真结果验证了方法的有效性。 System identification combined with free-running model tests is an effective method to the modeling of ship manoeuvring motion. By analyzing the test data of rudder angles and yaw rates, a method based on ridge regression was proposed for determining the coefficients in the mathematical model of ship manoeuvring motion. Predictions of manoeuvring motion were presented by using the identified model and compared to the test results. The simulation results demonstrate the validity of the identification algorithm proposed.
出处 《船海工程》 2009年第6期17-19,36,共4页 Ship & Ocean Engineering
基金 国家自然科学基金(50779033)
关键词 船舶操纵运动数学模型 系统辨识 最小二乘法 岭回归 mathematical model of ship manoeuvring motion system identification least squares method ridge regression
  • 相关文献

参考文献4

  • 1International Maritime Organization (IMO). Standards for Ship Manoeuvrability[S]. Resolution MSC. 137(76), December 2002.
  • 2罗伟林,邹早建.基于最小二乘支持向量机的船舶操纵运动建模[J].系统仿真学报,2008,20(13):3381-3384. 被引量:19
  • 3YOON H K Rhee K P Identification of hydrodynamic derivatives in ship maneuvering equations of motion by Estimation-Before-Modeling technique[J].Ocean Engineering, 2003, 45 (30) : 2379-2404.
  • 4贾欣乐 杨盐生.船舶运动数学模型[M].大连:大连海事大学出版社,1999..

二级参考文献10

  • 1杨雪晶,赵希人,王显峰.基于神经网络的船舶运动建模及随机最优控制[J].系统仿真学报,2007,19(2):372-375. 被引量:4
  • 2Vapnik.统计学习理论[M].张学工,译.北京:电子工业出版社,2004.
  • 3International Maritime Organization (IMO). A. 751(18), Interim Standards for Ship Manoeuvrability [S]. 1993.
  • 4International Maritime Organization (IMO). MSC. 137(76), Standards for Ship Manoeuvrability [S]. 2002.
  • 5贾欣乐,杨盐生.船舶运动数学模型一机理建模及辨识建模[M].大连:大连海事大学出版社,1999
  • 6Mahfouz A B, Haddara M R. Effect of the damping and excitation on the identification of the hydrodynamic parameters for an underwater robotic vehicle [J]. Ocean Engineering (S0029-8018), 2003, 30(8): 1005-1025.
  • 7Suykens J A K, De Brabanter J, Lukas L, et al. Weighted least squares support vector machines: robustness and sparse approximation [J]. Neurocomputing, Special issue on fundamental and information processing aspects of neurocomputing (S0925-2312), 2002, 48(1-4): 85-105.
  • 8Astrom K J, Kallstrom C G. Identification of ship steering dynamics [J]. Automatica (S0005-1098), 1976, 12(1): 9-22.
  • 9Kobayashi H. The Specilaist Committee on Esso Osaka, Final Report and Recommendations to the 23rd ITTC[R]. Venice, Italy: International Towing Tank Conference (ITTC), 2002: 588-590.
  • 10张孝双,彭秀艳,赵希人.基于神经网络方法的船舶姿态运动极短期预报与仿真[J].系统仿真学报,2002,14(5):641-642. 被引量:15

共引文献83

同被引文献51

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部