期刊文献+

用于采煤方式选择的人工神经元网络模型 被引量:3

An Artificial Neural Network Model for Mining Way Distinguishing
原文传递
导出
摘要 以大量调查数据为基础,建立了缓倾斜薄煤层采煤方式选择的人工神经元网络模型,该模型较全面地考虑了影响采煤方式选择的因素和现场专家经验,能准确地识别各种开采条件下缓倾斜薄煤层采煤方式。 Based on a lot of investigation data, an artifical neural network model is establi shed for distinguishing mining way of gently inclined low coal seam. The factor and experience of mining export that affect the selection of mining way are comprehensively considered in the model. The different mining way of gently inclined low coal seam can be exactly distinguished at different mining condition.
作者 王卫军
出处 《系统工程理论与实践》 EI CSCD 北大核心 1998年第11期57-60,116,共5页 Systems Engineering-Theory & Practice
基金 煤炭工业部一般项目
关键词 人工神经网络 薄煤层 采煤 网络模型 artifical neural network gently inclined low coal seam mining way
  • 相关文献

参考文献3

二级参考文献3

同被引文献18

  • 1齐红,刘大有,刘亚波,崔广才.一种基于GDT的缺省规则发现算法[J].吉林大学学报(理学版),2004,42(3):397-401. 被引量:1
  • 2孙庆先,方涛,郭达志,杨可明.空间数据挖掘技术中的划区效应及在矿山中的应用[J].煤炭学报,2007,32(8):804-807. 被引量:7
  • 3Mollestad T, Komorowski J. A rough set framework for data mining of propositional default rules [ A]. Pal S K, Skowron A. Rough fuzzy hybridization [ C]. Springer, 1999 : 233 - 262.
  • 4Engelbert Mephu Nguifo, Vincent Duquenne, Michel Liquie Re. Introduction concept lattice-based theory, methods and tools for knowledge discovery in databases: applications [J]. Applied Artificial Intelligence, 2003, 17 (3) : 177 -180.
  • 5Yao Y Y. A comparative study of formal concept analys nd rough set theory in data analysis [ A]. Proc. of the 4th International Conference on Rough Sets and Current Trendin Computing [ C]. Heidelberg: Springer-Verlag, 2004:59 -68.
  • 6Zhong N, Dong J Z, Ohsuga S. Meningitis data mining by cooperatively using GDT - RS and RSBR [ J]. Pattern Recognition letters, 2003, 24 : 887 - 894.
  • 7Kryszkiewicz M. Rules in incomplete information systems [ J]. Journal of Information Sciences, 1999, 113:271 -292.
  • 8Skowron A, Polkowski L. Rough mereological foundations for design, analysis, synthesis, and control in distributive systems [J]. Information Sciences, 1998, 104 (1/2) : 129 - 156.
  • 9Pawlak Z.AI and intelligent industrial application the rough set perspective[J].Cybernetics and Systems:An International Journal,2000,31:227~252.
  • 10Pawlak Z.Rough sets[J]. Communications of ACM,1995,38(1):89~95.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部