期刊文献+

一类竞争模型正平衡解的分支和稳定性 被引量:1

Stability and bifurcation of positive steady state solutions for a class of competition system
在线阅读 下载PDF
导出
摘要 讨论了一类推广的竞争生态模型的平衡态系统在第三边界条件下正解的存在性和稳定性.利用极值原理得到半平凡解(u0,0),(0,v0)的存在惟一性,利用局部分歧的技巧证明了系统在(u0,0)(0,v0)处出现分歧现象,从而得到正解分支.然后利用线性算子扰动理论和分支解的稳定性理论得到这类正解的稳定性. The existence and stability on a kind of strictly positive solutions of the steady-state system are investigated for a class of extended competition biological system under the third boundary conditions. Using the maximum principle, the existence and uniqueness of two class of semi-trivial solutions are obtained. By means of local bifurcation theories ,the system generate bifurcations at the points (u0 ,0), (0 ,v0 ) ,and the positive solutions bifurcations are proved. Furthermore partial stability for the positive solutions is established by the perturbation theorem for linear operators and the stability theorem for bifurcation solutions.
作者 李丽 李艳玲
出处 《纺织高校基础科学学报》 CAS 2009年第3期328-331,共4页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(10571115)
关键词 竞争系统 主特征值 局部分歧 稳定性 competition system principle eigenvalue local bifurcation stability
  • 相关文献

参考文献6

  • 1CONWEY E D, GARDNER R, SMOLLER J. Stability and bifurcation of steady state solutions for predatorprey equations [ J ]. Adv Appl Math, 1982, 3:288-334.
  • 2BLAT J, BROWN K J. Bifurcation of steady-state solutions in the predator - prey and competitionsystems [ J ]. Proc Roy Soc Edinburgh, 1984,97 (A) : 21-34.
  • 3CRANDALI M G, RABINOWTTZ P H. Bifurcation, perturbation of simple eigenvalues, and linearized stability [ J ]. Arch Rational Mech Anal, 1973, 52: 161-180.
  • 4WU J H. Coexistence states for cooperative model with diffusion[ J ]. Comput Math Appl,2002, 43:1 277-1 290.
  • 5SMOLLER J. Shock waves and reaction-diffusion equations [ M ]. New York: Springer-Verlag, 1983.
  • 6钟承奎,范先令,陈文yuan.非线性泛函分析引论[M].兰州:兰州大学出版社,2004.

共引文献19

同被引文献9

  • 1El Khatib N,GENIEYS S,VOLPERT V. Atherosclerosis initiation modeled as an inflammatory process[J].Math Mode Nat Phenom,2007,(02):126-141.
  • 2El Khatib N,GENIEYS S,KAZMIERZAK B. Reaction-diffusion model of atherosclerosis development[J].{H}Journal of Mathematical Biology,2012,(02):349.
  • 3JANG J,NI W M,TANG M X. Global bifurcation and structure of turing patters in the 1-D lengyel-epstein model[J].{H}JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS,2004,(02):297-320.
  • 4LOU Y,NI W M. Diffusion,self-diffusion and cross-diffusion[J].{H}Journal of Differential Equations,1996.79-131.
  • 5SMOLLER J. Shock waves and reaction-diffusion equations[J].{H}New York:Springer-Verlag,1983.167-189.
  • 6RABINOWITZ P H. Some global results for nonlinear eigenvalue problems[J].{H}Journal of Functional Analysis,1971.487-513.
  • 7WU J H. Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Anal,2000.817-835.
  • 8聂华,刘志强,吴建华.N维Lengyel-Epstein模型常数平衡解的分歧[J].工程数学学报,2008,25(5):914-918. 被引量:3
  • 9院振军,李艳玲.一类非均匀恒化器食物网的共存态[J].纺织高校基础科学学报,2010,23(4):427-432. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部