摘要
提出一种基于最大树的Aspect挖掘方法,该方法使用Aspect的思想,从动态行为挖掘横切关注点获取运行时方法调用的信息,从而构造方法调用关系数据矩阵,在模糊相似关系的理论基础上,引入相似度构造出对象相似矩阵,并利用最大树方法识别系统中的横切关注点,从而为系统的软件重构和复用提供依据。最后通过实验验证了其有效性,进一步通过与目前具有代表性的挖掘方法进行比较,认为本方法具有实现清晰、效率较高的优点。
By means of discovering crosscutting concerns from legacy systems, aspect mining intends to help migrate the systems to an aspect-oriented design. An improved method based on maximum tree method for aspect mining is presented. The method uses aspect ideas to capture the runtime method-call information by mining crosscutting concerns from dynamic behaviors, and then constructs a method-call relationship data matrix. Based on fuzzy similarity relation theory, by introducing the similarity, an object similarity matrix is constructed, and the maximum tree method is used to identify the crosscutting concerns in the system. The method can provide a basis for system's software reconstruction and reusability. An experiment is conducted to verify the validity of the method. Compared with the existing typical mining methods, the method shows the virtue of clear implementation and high efficiency.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2009年第10期1221-1225,共5页
Journal of Chongqing University
基金
国家自然科学基金面上项目资助(50875268)
关键词
面向对象编程
遗留系统
模式识别
方面挖掘
最大树
object oriented programming
legacy systems pattern recognition
aspect mining
maximum tree