期刊文献+

最大树法的Aspect挖掘方法 被引量:1

Maximum tree method based aspect mining method
原文传递
导出
摘要 提出一种基于最大树的Aspect挖掘方法,该方法使用Aspect的思想,从动态行为挖掘横切关注点获取运行时方法调用的信息,从而构造方法调用关系数据矩阵,在模糊相似关系的理论基础上,引入相似度构造出对象相似矩阵,并利用最大树方法识别系统中的横切关注点,从而为系统的软件重构和复用提供依据。最后通过实验验证了其有效性,进一步通过与目前具有代表性的挖掘方法进行比较,认为本方法具有实现清晰、效率较高的优点。 By means of discovering crosscutting concerns from legacy systems, aspect mining intends to help migrate the systems to an aspect-oriented design. An improved method based on maximum tree method for aspect mining is presented. The method uses aspect ideas to capture the runtime method-call information by mining crosscutting concerns from dynamic behaviors, and then constructs a method-call relationship data matrix. Based on fuzzy similarity relation theory, by introducing the similarity, an object similarity matrix is constructed, and the maximum tree method is used to identify the crosscutting concerns in the system. The method can provide a basis for system's software reconstruction and reusability. An experiment is conducted to verify the validity of the method. Compared with the existing typical mining methods, the method shows the virtue of clear implementation and high efficiency.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第10期1221-1225,共5页 Journal of Chongqing University
基金 国家自然科学基金面上项目资助(50875268)
关键词 面向对象编程 遗留系统 模式识别 方面挖掘 最大树 object oriented programming legacy systems pattern recognition aspect mining maximum tree
  • 相关文献

参考文献15

  • 1HURSCH W, VIDEIRA L C. Separation of concerns [M]. Boston :Northeastern University , 1995.
  • 2MONNOX A. Rapid J2EE development[M]. Pearson Education, 2005.
  • 3KICZALES G, HILSDALE E, HUGUNIN J, et al. An overview of AspectJ [C]// In: Knudsen JL, ed. Proc. of the European Conf. on Object Oriented Programming. Berlin: Springer Verlag, 2001 : 327-254.
  • 4SPINCZYK O, LOHMANN D, URBAN M. Advances in AOP with AspectC+ + [C]// In: Hamido F, eds. Proc. of the Software Methodologies, Tools and Techniques (SoMeT 2005). Tokyo: IOS Press, 2005: 33-53.
  • 5陈向群,杨芙清.面向Aspect的操作系统研究[J].软件学报,2006,17(3):620-627. 被引量:10
  • 6CHANCHAL K R , MOHAMMAD G U , BANANI R ,et al. Evaluating aspect mining techniques: A case study[C]//15th IEEE International Conference on Program Comprehension. [S. L.]: IEEE,2007:167-176.
  • 7COJOCAR S, SERBAN G. On evaluating aspect mining techniques [ C ]// Intelligent Computer Communication and Processing, 2007 IEEE International Conference on 6-8 Sept. [S. L. ]: IEEE, 2007 :217-224.
  • 8MARIUS M , LEON M, ARIE V D . A common framework for aspect mining based on crosscutting concern sorts[C]// Reverse Engineering, 2006. WCRE 06. 13th Working Conference [S. L.]: IEEE, 2006 (s) : 29-38.
  • 9SHEPHERD D , TOURWE T, POLLOCK L. Using language clues to discover crosscutting concerns [C]. Workshop on the Modeling and Analysis of Concerns, 2005.
  • 10BREU S, ZIMMERMANN T. Aspect mining for large systems[C]// Proceedings of the Conference on Object- Oriented Programming Systems, Languages, and Applications, OOPSLA, 2006.[S. L.]:IEEE, 2006: 641-642.

二级参考文献15

  • 1杨芙清.软件工程技术发展思索[J].软件学报,2005,16(1):1-7. 被引量:270
  • 2ELRAD T,FILMAN R E,BADER A.Aspect-oriented programming[J].Communication of the ACM,2001,44(10):29-32.
  • 3ELRAD T,AKSIT M M,KICZALES G,et al.Discussing aspects of AOP[J].Communication of the ACM,2001,44(10):33-38.
  • 4HANNEMANN J,KICZALES G.Overcoming the prevalent decomposition of legacy code[EB/OL].http://www.cs.ubc.ca/~jan/papers/hannemann-icse2001.pdf,2004-10.
  • 5GRISWOLD W G,KATO Y,YUAN J J.Aspect browser:tool support for managing dispersed aspects[R].San Diego,CA,USA:Department of Computer Science and Engineering,University of California,1999.
  • 6BREU S,KRINKE J.Aspect mining using event traces[A].Proceedings of 19th IEEE International Conference on Automated Software Engineering[C].Linz,Austria:IEEE Computer Society,2004.310-315.
  • 7HAN J W,KANBR M.Data mining concepts and techniques[M].Beijing:Higher Education Press,2001.143-177.
  • 8KAUFAN L,ROUSSEEUW P J.Finding groups in data:an introduction to cluster analysis[M].New York,NY,USA:John Wiley&Sons,1990.
  • 9ZHANG T,RAMAKRISHNAN R,LIVNY M.Birch:an efficient data clustering method for very large databases[A].Proceedings of ACM SIGMOD[C].Montreal,Quebec,Canada:ACM Press,1996.103-114.
  • 10ESTER M,KRIEGEL HP,SANDER J,et al.A density based algorithm for discovering clusters in large spatial databases with noise[A].Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining[C].Portland:AAAI Press,1996.226-231.

共引文献17

同被引文献9

  • 1Gall M, Christa S. vip editorst introduction: as- pect-oriented programming [ J]. IEEE Software, 2006, 23(1): 20-23.
  • 2Awais R, Thomas C, Phil G, et al. Aspect-oriented software development in practice; tales from AOSD- Europe[J]. Computer, 43(2):19-26.
  • 3Ceccato M, Tonella P. Dynamic aspect mining[J]. IET Software, 2009, 3(4) : 321-336.
  • 4Breu S, Krinke J. Aspect mining using event traces [C]//Proc of the 19th International Conference on Automated Software Engineering (ASE'04). Linz,Austria: IEEE Press, 2004:310-315.
  • 5Henry S, Kafura D. Software structure metrics based on information flow[J]. IEEE Transactions on Soft- ware Engineering, 1981, 7(5): 510-518.
  • 6Zhang Danfeng, Guo Yao, Chen Xiangqun. Automa- ted aspect recommendation through clustering-based fan-in analysis[C]//Proc of 23rd IEEE/ACM Inter- national Conference on Automated Software Engi- neering (ASE 2008). L' Aquila:Inst of Elec and Elec Eng Computer Society, 2008: 278-287.
  • 7Kim M, Kellens A, Krinke J. Pitfalls in aspect min- ing[C]//Proc of thelSth IEEE Working Conference on Reverse Engineering (WCRE' 08). Antwerp: IEEE Computer Society, 2008 : 113-122.
  • 8梅宏,王千祥,张路,王戟.软件分析技术进展[J].计算机学报,2009,32(9):1697-1710. 被引量:103
  • 9倪友聪,应时,张琳琳,文静,叶鹏,赵楷.一种面向方面软件体系结构中的编织机制研究[J].计算机研究与发展,2010,47(4):695-706. 被引量:7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部